Skip to main content
Log in

Sonochemical synthesis, structural, electrical transport and magnetic properties of NiWO4 nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The NiWO4 nanoparticles are synthesized by the facile sonochemical method and characterized using various analytical techniques. The thermal stability and the crystallization temperature of the as-prepared NiWO4 were revealed using thermogravimetric and differential thermal analysis (TG/DTA). Phase purity and crystallinity of wolframite type monoclinic structure of NiWO4 nanoparticles were corroborated using the X-ray diffraction (XRD) analysis. Fourier transform infrared spectroscopy (FTIR) employed to understand the bending and stretching vibrations of the M–O bonds and the surface functional groups present in NiWO4. The average particle size of 25 nm with nearly spherical morphology of the NiWO4 nanoparticles was inferred using both scanning electron microscopic (SEM) and transmission electron microscopic (TEM) techniques. A comparative impedance spectral analysis was carried out at both room (300 K) and high temperature (973 K) to analyze the temperature-dependent conductance behaviour of NiWO4 nanoparticles. The negative temperature coefficient of resistance (NTCR) behaviour of NiWO4 nanoparticles was revealed through the decreasing resistance with increasing temperature and obtained the d.c. conductivity of 7.493 \(\times \) 10−8 S cm−1 at 973 K. The hopping conduction mechanism and thermally activated mobility of charge carriers were observed in the present study. Further, the dielectric study infers the contributions of grain boundaries and grains at low and high frequencies, respectively. Finally, the room temperature paramagnetic behaviour of the NiWO4 is corroborated through vibrating sample magnetometer (VSM) analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S. Dey, R.A. Ricciardo, H.L. Cuthbert, P.M. Woodward, Inorg. Chem. 53, 4394 (2014)

    CAS  Google Scholar 

  2. R. Lacomba-Perales, J. Ruiz-Fuertes, D. Errandonea, D. Martínez-García, A. Segura, Europhys. Lett. 83, 37002 (2008)

    Google Scholar 

  3. R.O. Keeling, Acta Cryst. 10, 209 (1957)

    CAS  Google Scholar 

  4. S.M. AlShehri, J. Ahmed, A.M. Alzahrani, T. Ahamad, New J. Chem. 41, 8178 (2017)

    CAS  Google Scholar 

  5. P. Rupa Kasturi, S. Shanmugapriya, M. Elizabeth, K. Athira, R. Kalai Selvan, J. Mater. Sci. Mater. Electron. 31, 2378 (2020)

    Google Scholar 

  6. L. Niu, Z. Li, Y. Xu, J. Sun, W. Hong, X. Liu, J. Wang, S. Yang, ACS Appl. Mater. Interfaces 5, 8044 (2013)

    CAS  Google Scholar 

  7. S. Jha, S. Mehta, Y. Chen, P. Renner, S. Sankar, P. Sam, S. Kundu, H. Liang, J. Mater. Chem. C 8, 3418 (2020)

    CAS  Google Scholar 

  8. M. Sivakumar, V. Veeramani, S.-M. Chen, M. Rajesh, P. Veerakumar, J.-Y. Chang, S.-B. Liu, Sci. Rep. 6, 24128 (2016)

    Google Scholar 

  9. T. Zhong, X. Liang, H. Zhang, S. Yang, J. Li, Q. Jianguo, B. Quan, G. Lu, Sens. Lett. 9, 307 (2011)

    CAS  Google Scholar 

  10. L. Yang, X. Ren, G. Cui, X. Xiong, X. Sun, ACS Sustain. Chem. Eng. 6, 9555 (2018)

    Google Scholar 

  11. R.C. Pullar, S. Farrah, N. McN Alford, J. Eur. Ceram. Soc. 27, 1059 (2007)

    CAS  Google Scholar 

  12. E.S. Babu, B.J. Rani, G. Ravi, R. Yuvakkumar, R.K. Guduru, V. Ganesh, S. Kim, Mater. Lett. 220, 209 (2018)

    CAS  Google Scholar 

  13. K.M. Rahulan, I.P. Kokila, N.A.L. Flower, R.A. Sujatha, G. Vinitha, Opt. Mater. 77, 148 (2018)

    Google Scholar 

  14. R. Karthiga, B. Kavitha, M. Rajarajan, A. Suganthi, Mater. Sci. Semicond. Process. 40, 123 (2015)

    CAS  Google Scholar 

  15. C.B. Liu, Z.Z. He, Y.J. Liu, R. Chen, M.M. Shi, H.P. Zhu, C. Dong, J.F. Wang, J. Magn. Magn. Mater. 444, 190 (2017)

    CAS  Google Scholar 

  16. M.A. Prosnikov, VYu Davydov, A.N. Smirnov, M.P. Volkov, R.V. Pisarev, P. Becker, L. Bohatý, Phys. Rev. B 96, 014428 (2017)

    Google Scholar 

  17. R. Bharati, R.A. Singh, B.M. Wanklyn, J. Mater. Sci. 18, 1540 (1983)

    CAS  Google Scholar 

  18. R. Bharati, R.A. Singh, B.M. Wanklyn, J. Mater. Sci. 15, 1293 (1980)

    CAS  Google Scholar 

  19. J. Tian, Y. Xue, X. Yu, Y. Pei, H. Zhang, J. Wang, RSC Adv. 8, 41740 (2018)

    CAS  Google Scholar 

  20. H. Harshan, K.P. Priyanka, A. Sreedevi, J. Anjali, V. Thomas, Eur. Phys. J. B 91, 287 (2018)

    CAS  Google Scholar 

  21. J. Ungelenk, M. Speldrich, R. Dronskowski, C. Feldmann, Solid State Sci. 31, 62 (2014)

    CAS  Google Scholar 

  22. N.A. Lima, L.D.S. Alencar, M.S. Li, C.A.C. Feitosa, A. Mesquita, J.C. Mpeko, M.I.B. Bernardi, J. Adv. Ceram. 9, 55 (2020)

    CAS  Google Scholar 

  23. Z. Song, J. Ma, H. Sun, W. Wang, Y. Sun, L. Sun, Z. Liu, C. Gao, Ceram. Int. 35, 2675 (2009)

    CAS  Google Scholar 

  24. K.S. Suslick, Science 247, 1439 (1990)

    CAS  Google Scholar 

  25. R. Talebi, J. Mater. Sci.: Mater. Electron. 27, 3565 (2016)

    CAS  Google Scholar 

  26. R.K. Selvan, A. Gedanken, Nanotechnology 20, 105602 (2009)

    Google Scholar 

  27. S.M. Pourmortazavi, M. R-Nasrabadi, M.S. Karimi, S. Mirsadeghi, RSC Adv. 42, 19943 (2018)

    Google Scholar 

  28. A.L.M. de Oliveira, J.M. Ferreira, M.R.S. Silva, S.C. de Souza, F.T.G. Vieira, E. Longo, A.G. Souza, I.M.G. Santos, J. Therm. Anal. Calorim. 97, 167 (2009)

    Google Scholar 

  29. T.H. Lee, F.Y.C. Boey, K.A. Khor, Polym. Compos. 16, 481 (1995)

    CAS  Google Scholar 

  30. A. Shanmugavani, S. Gowrimeena, P. RupaKasturi, S. Yuvaraj, L. John Berchmans, R. Kalai Selvan, J. Phys. Chem. Solids 119, 210 (2018)

    CAS  Google Scholar 

  31. H. Eranjaneya, P.S. Adarakatti, A. Sidaramanna, C.G. Thimanna, J. Mater. Sci. 30, 3574 (2018)

    Google Scholar 

  32. S. Zhu, J. Guo, J. Dong, Z. Cui, T. Lu, C. Zhu, D. Zhang, J. Mac, Ultrason. Sonochem. 20, 872 (2013)

    CAS  Google Scholar 

  33. A. Gedanken, Ultrason. Sonochem. 11, 47 (2004)

    CAS  Google Scholar 

  34. V.D. Nithya, R.K. Selvan, Phys. B 406, 24 (2011)

    CAS  Google Scholar 

  35. S. Bag, P. Das, B. Behera, J. Theor. Appl. Phys. 11, 13 (2017)

    Google Scholar 

  36. J.T.C. Irvine, D.C. Sinclair, A.R. West, Adv. Mater. 2, 132 (1990)

    CAS  Google Scholar 

  37. A.K. Roy, A. Singh, K. Kumari, K.A. Nath, A. Prasad, K. Prasad, ISRN Ceram. 2012, 854831 (2012)

    Google Scholar 

  38. A. Shukla, R.N.P. Choudhary, A.K. Thakur, D.K. Pradhan, Phys. B 405, 99 (2010)

    CAS  Google Scholar 

  39. M.A.L. Nobre, S. Lanfredi, J. Phys. Chem. Solids 64, 2457 (2003)

    CAS  Google Scholar 

  40. P. Khatri, B. Behera, R.N.P. Choudhary, J. Phys. Chem. Solids 70, 385 (2009)

    CAS  Google Scholar 

  41. A.K. Jonscher, Nature 267, 673 (1977)

    CAS  Google Scholar 

  42. D.P. Almond, A.R. West, Solid State Ion. 23, 27 (1987)

    Google Scholar 

  43. S. Shanmugapriya, S. Surendran, V.D. Nithya, P. Saravanan, R. Kalai Selvan, Mater. Sci. Eng. B 214, 57 (2016)

    CAS  Google Scholar 

  44. M. Singh, M. Goyal, K. Devlal, J. Taibah Univ. Sci. 12, 470 (2018)

    Google Scholar 

  45. S. Yuvaraj, R. Kalai Selvan, V.B. Kumar, I. Perelshtein, A. Gedanken, S. Isakkimuthu, S. Arumugam, Ultrason. Sonochem. 21, 599 (2014)

    CAS  Google Scholar 

  46. C. Rayssi, S. El Kossi, J. Dhahri, K. Khiroun, RSC Adv. 8, 17139 (2018)

    CAS  Google Scholar 

  47. J. Liu, C.-G. Duan, W. Guoyin, W.N. Mei, K.W. Smith, J.R. Hardy, J. Chem. Sci. 119, 2812 (2003)

    CAS  Google Scholar 

  48. F. Gul, M. Athar, M. AsimFarid, J. Electroceram. 40, 300–305 (2018)

    CAS  Google Scholar 

  49. B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials (Wiley-IEEE Press, New Jersey, 2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kalai Selvan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanmugapriya, S., Nithya, V.D., Rajalakshmi, A. et al. Sonochemical synthesis, structural, electrical transport and magnetic properties of NiWO4 nanoparticles. J Mater Sci: Mater Electron 31, 15616–15626 (2020). https://doi.org/10.1007/s10854-020-04125-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04125-9

Navigation