Skip to main content
Log in

Effect of trivalent transition metal ion substitution in multifunctional properties of Dy2O3 system

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present work describes the systematic study on inducing multiferroic properties in non-magnetic Dy2O3 system. The ceramic compounds of Dy2−xFexO3 (where x = 0.1–1.5) have been prepared by solid state reaction method. The powder X-ray diffraction patterns of all the prepared compounds reveal the strong influence of transition metal ion (Fe) in the Dy2O3 crystal structure. By Rietveld analysis, it is determined that with respect to increasing concentration of Fe3+ ion at Dy3+ site leads to transformation of crystal structure from Cubic to Orthorhombic with varying concentration of DyFeO3 phase and further increase in Fe3+ concentration leads to the formation of Garnet phase in Dy2−xFexO3 compounds. The scanning electron microscopic images of the samples confirm the change in surface morphology with increasing grain boundaries and porosity due to the substitution of Fe in Dy2O3 system which may effects on the electrical transport properties of the materials and increasing concentration of Fe in Dy2O3 system is also analyzed by energy dispersive analysis spectra. By Raman spectral analysis, it is identified that the strong absorption band of Cubic Dy2O3 compound at 373 cm−1 is gradually shifted to 257 cm−1 which indicates the molecular stretching motion of RE–O bond in REO6 octahedra and the large deviation in position of intense Raman bands below 300 cm−1 confirms the incorporation of Fe3+ ion in the host Dy2O3 lattice and imparting large polarizability in the prepared compounds due to translational motions of ReO6 octahedrons by variation in bond length and reduced mass of the bonding atoms. Diffused reflectance spectroscopy analysis implies the semiconducting nature of all the prepared compounds. It is also identified that the energy gap values goes on decreasing till DyFeO3 and then starts increasing due to change in crystal structure by cubic to orthorhombic and then orthorhombic to garnet phase. From the magnetization studies, it is found that till even substitution of Fe (i.e. x = 0.1–0.9) in Dy2−xFexO3 system, the compounds exhibits paramagnetic nature whereas from x = 1.0 i.e. DyFeO3, the samples exhibits ferromagnetic nature. The variation of magnetization behaviour from paramagnetic to ferromagnetic in higher concentration of Fe explicit the feasibility of attaining ferroic behaviour in Garnet mixed phase ceramic compounds. The electric polarization analysis reveal that while substituting Fe3+ ion in Dy3+ site by more than 50% of molecular ratio, the compounds exhibits non-zero remanance and coercivity values with respect to applied d.c. electric field and evident peculiar ferroelectric characteristic of those compounds. The maximum saturation polarization achieved in Dy0.6Fe1.4O3 compound is 0.2 µC/cm2 and found comparable with the results observed from Bismuth Ferrite related compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Schmid, Ferroelectrics 162, 317–338 (1994)

    Article  Google Scholar 

  2. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299, 1719–1722 (2003)

    Article  Google Scholar 

  3. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Nature 426, 55–58 (2003)

    Article  Google Scholar 

  4. N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guha, S.-W. Cheong, Nature 429, 392–395 (2004)

    Article  Google Scholar 

  5. C. Ederer, N.A. Spaldin, Phys. Rev. B 71, 060401 (2005)

    Article  Google Scholar 

  6. S.T. Shen, H.S. Weng, Ind. Eng. Chem. Res 37, 2654–2661 (1998)

    Article  Google Scholar 

  7. V.V. Kharton, A.A. Yaremchenko, A.V. Kovalevsky, A.P. Viskup, E.N. Naumovich, P.F. Kerko, J. Membr. Sci 163, 307–317 (1999)

    Article  Google Scholar 

  8. V.V. Kharton, A.A. Yaremchenko, E.N. Naumovich, J. Solid State Electrochem. 3, 303–326 (1999)

    Article  Google Scholar 

  9. D. Kuscer, M. Hrovat, J. Holc, S. Bernik, D. Kolar, J. Power Sources 61, 161–165 (1996)

    Article  Google Scholar 

  10. E. Traversa, S. Matsushima, G. Okada, Y. Sadaoka, Y. Sakai, W. Watanabe, Sensors and Actuators B 25, 661–664 (1995)

    Article  Google Scholar 

  11. D.S. Schmool, N. Keller, M. Guyot, R. Krishnan, M. Tessier, J. Appl. Phys 86, 5712–5717 (1999)

    Article  Google Scholar 

  12. H. Sakakima, M. Satomi, E. Hirota, H. Adachi, IEEE Trans. Magn. 35, 2958–2960 (1999)

    Article  Google Scholar 

  13. V. Anbarasu, A. Manigandan, S. Sathiyakumar, K. Kaliyaperumal, K. Jayabalan, J. Rare Earths 27, 1013–1017 (2009)

    Article  Google Scholar 

  14. V. Anbarasu, A. Manigandan, T. Karthik, K. Sivakumar, J. Mater. Sci. 23, 1201–1209 (2012)

    Article  Google Scholar 

  15. M. Ristic, S. Popovic, I. Czako-Nagy, S. Music. Mater. Lett. 27, 337–341 (1996)

    Article  Google Scholar 

  16. H.I. Adiguzel, M.A. Aksan, M.E. Yakinci, J. Mater. Process. Technol. 207, 258–264 (2008)

    Article  Google Scholar 

  17. A. Ubaldini, M.M. Carnasciali, J. Alloys Compd. 454, 374–378 (2008)

    Article  Google Scholar 

  18. Fu Xiaojian, Xu Yuanda, Ji Zhou, J. Mater. Sci. 47, 1697–1701 (2012)

    Article  Google Scholar 

  19. Abrashev, Todorov, Geshev, J. Appl. Phys. 116, 103508 (2014)

    Article  Google Scholar 

  20. H. Zhang, Q. Yang, B. Zhang, L. Shenzhou, J Raman Spectrosc. 42, 1384–1387 (2011)

    Article  Google Scholar 

  21. J. Torrent, V. Barron, Diffuse reflectance spectroscopy of iron oxides. Encycl. Surf. Colloid Sci. 1, 1438–1446 (2002)

    Google Scholar 

  22. S. Jie, L. Xiaomei, C. Zhang, J. Zhang, S. Peng, W. Xiaobo, K. Min, F. Huang, J. Zhu, J. Mater. Sci. 46, 3488–3492 (2011)

    Article  Google Scholar 

  23. Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.-M. Liu, Z.G. Liu, Appl. Phys. Lett. 84, 1731–1733 (2004)

    Article  Google Scholar 

  24. K. Jawahar, R.N.P. Choudhary, Solid State Commun. 142, 449–452 (2007)

    Article  Google Scholar 

  25. I. Coondoo, N. Panwar, A.K. Jha, Phys. B 406, 374–381 (2011)

    Article  Google Scholar 

  26. K. Kamala Bharathi, J. Arout Chelvane, G. Markandeyulu, J. Magn. Magn. Mater. 321, 3677–3680 (2009)

    Article  Google Scholar 

  27. P. Singh, A. Roy, A. Garg, R. Prasad, J. Appl. Phys. 117, 184104 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank Department of Science and Technology – Science and Engineering Research Board (DST – SERB) for the financial support (SERB/F/4297/2013-14 dated 04.10.2013) provided to carry out the research work. Authors would like to thank Dr. N V. Giridharan, Assistant Professor, Department of Physics, National Institute of Technology, Tiruchirappalli 620 015 for providing Electric Polarization facility. The authors thank Sophisticated Analytical Instrumentation Facility (SAIF), Indian Institute of Technology–Madras, Chennai–600036 and Central Instrumentation Facility (CIF), Pondicherry University, Puducherry for providing necessary facilities to carry out the characterization work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Anbarasu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2671 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anbarasu, V., Dhilip, M., Saravana Kumar, K. et al. Effect of trivalent transition metal ion substitution in multifunctional properties of Dy2O3 system. J Mater Sci: Mater Electron 28, 8976–8985 (2017). https://doi.org/10.1007/s10854-017-6628-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6628-9

Keywords

Navigation