Skip to main content
Log in

Inducing multiferroic behaviour in the diamagnetic Y2O3 system

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The synthesis and characterization of Y2−xFexO3 (where x = 0–0.3) compounds has been carried out for their importance in the field of multiferroic materials. The powder X-ray diffraction reveal that the compounds Y1.95Fe0.05O3, Y1.9Fe0.1O3, Y1.85Fe0.15O3 and Y1.8Fe0.2O3 crystallize in tetragonal structure whereas Y1.75Fe0.25O3 and Y1.7Fe0.3O3 compounds crystallize in orthorhombic structure. The change in crystal system with respect to the concentration of Fe may be attributed to the variation in occupancy position of Fe3+ into the Y3+ site of Y2O3 system. Variation in crystal structure, surface morphology and composition was studied by micro-Raman analysis, SEM and EDX analysis. The shift in intense Raman signals from 426 to 385 cm−1 confirms the change in the crystal structure of the prepared compounds. Further it is also identified that the Eg mode of vibration is the dominant in the Fe substituted compounds. The substitution of Fe in the Y2O3 system leads to the increase in the intensity of resonance band, which indicates a large polarisability variation in the Y2−xFexO3 compounds. Diffused reflectance studies show a red shift in energy gap values while increasing the concentration of Fe. The room temperature magnetization and electron paramagnetic resonance studies reveal that the incorporation of Fe in the Y2O3 system leads to magnetic phase change from diamagnetic to ferromagnetic. The electric polarization studies imply that the substitution of lower ionic radii element Fe3+ in the Y3+ site leads to distortion in the lattice and show the way to spontaneous dipole moment and it was found that the Y1.8Fe0.2O3 compound exhibits the possibility of multiferroic behaviour. Therefore this paper explores the possibility of inducing ferromagnetic and ferroelectric behaviour in the Fe substituted yttrium oxide system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R.N. Bhowmik, M. Nrisimha Murty, E. Sekhar Srinadhu, Magnetic modulation in mechanical alloyed Cr1.4Fe0.6O3. PMC Phys. B 1, 1–18 (2008)

    Article  CAS  Google Scholar 

  2. G.A. Smolenskii, I.E. Chupis, Ferroelectromagnets. Sov. Phys. Uspekhi 25, 475–493 (1982)

    Article  Google Scholar 

  3. H. Schmid, Multiferroic magnetoelectrics. Ferroelectrics 162, 317–338 (1994)

    Article  Google Scholar 

  4. L. Hongri, L. Zuli, L. Qing, Y. Kailun, Electric and magnetic properties of multiferroic (BiFeO3)1−x–(PbTiO3)x films prepared by the sol–gel process. J. Phys. D Appl. Phys. 39, 1022–1027 (2006)

    Article  Google Scholar 

  5. A. Moreira dos Santos, S. Parashar, A.R. Raju, Y.S. Zhao, A.K. Cheetham, C.N.R. Rao, Evidence for the likely occurrence of magnetoferroelectricity in the simple perovskite, BiMnO3. Solid State Commun. 122, 49–52 (2002)

    Article  CAS  Google Scholar 

  6. T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, Y. Tokura, Magnetocapacitance effect in multiferroic BiMnO3. Phys. Rev. B 67, 180401 (2003). (4 pages)

    Article  Google Scholar 

  7. I.A. Santos, L.F. Cotica, S.N. De Medeiros, A. Paesano Jr., A.A. Coelho, S. Gama, M.Z. Venet, D. Garcia, J.A. Eiras, Structural, microstructural and magnetic properties of the high-energy ball milled BiFeO3 and BiFe0.95Mn0.05O3 ferroelectromagnetic compounds. Ferroelectrics 338, 233–239 (2006)

    Article  CAS  Google Scholar 

  8. E. Hanamura, K. Hagita, Y. Tanabe, Clamping of ferroelectric and antiferromagnetic order parameters of YMnO3. J. Phys. Condens. Matter 15, L103–L109 (2003)

    Article  CAS  Google Scholar 

  9. T. Katsufuji, S. Mori, Y. Masaki, Y. Moritomo, N. Yamamoto, H. Takagi, Dielectric and magnetic anomalies and spin frustration in hexagonal RMnO3 (R = Y, Yb, and Lu). Phys. Rev. B 64, 104419 (2001)

    Article  Google Scholar 

  10. L.F. Cotica, S.N. De Medeiros, I.A. Santos, A. Paesano Jr., E.J. Kinast, J.B.M. Da Cunha, M. Venet, D. Garcia, J.A. Eiras, Structural, magnetic, and dielectric investigations of the FeAlO3 multiferroic ceramics. Ferroelectrics 338, 241–246 (2006)

    Article  CAS  Google Scholar 

  11. A. Shireen, R. Saha, P. Mandal, A. Sundaresan, C.N.R. Rao, Multiferroic and magnetodielectric properties of the Al1-xGaxFeO3 family of oxides. J. Mater. Chem. 21, 57–59 (2011)

    Article  CAS  Google Scholar 

  12. H. Paik, H. Hwang, K. No, S. Kwon, D.P. Cann (2007) Room temperature multiferroic properties of single-phase, (Bi0.9La0.1)FeO3–Ba(Fe0.5Nb0.5)O3 solid solution ceramics. Appl. Phys. Lett. 90, 042908 (p 3)

    Google Scholar 

  13. A.Z. Simoes, L.S. Cavalcante, C.S. Riccardi, J.A. Varela, E. Longo, Ferroelectric and dielectric behaviour of Bi0.92La0.08FeO3 multiferroic thin films prepared by soft chemistry route. J. Sol-Gel. Sci. Technol. 44, 269–273 (2007)

    Article  CAS  Google Scholar 

  14. Y. Benfang, L. Meiya, J. Liu, D. Guo, L. Pei, X. Zhao, Effects of ion doping at different sites on electrical properties of multiferroic BiFeO3 ceramics. J. Phys. D Appl. Phys. 41, 065003 (2008). (4 pp)

    Article  Google Scholar 

  15. H.C. Hsu, C.D. Yang, W.Y. Tseng, H.C. Ku, Y.Y. Hsu, Magnetic and dielectric properties of multiferroic Tb0.5Eu0.5MnO3. J. Phys. Conf. Ser. 273, 012114 (2011). (p 4)

    Google Scholar 

  16. V.A. Khomchenko, D.A. Kiselev, I.K. Bdikin, V.V. Shvartsman, P. Borisov, W. Kleemann, J.M. Vieira, A.L. Kholkin, Crystal structure and multiferroic properties of Gd-substituted BiFeO3. Appl. Phys. Lett. 93, 262905 (2008). (3 pp)

    Article  Google Scholar 

  17. A.A. Amirov, I.K. Kamilov, A.B. Batdalov, I.A. Verbenko, O.N. Razumovskaya, L.A. Reznichenko, L.A. Shilkina, Magnetoelectric Interactions in BiFeO3, Bi0.95Nd0.05FeO3 and Bi0.95La0.05FeO3 multiferroics. Tech. Phys. Lett. 34, 760–762 (2008)

    Article  CAS  Google Scholar 

  18. V. Anbarasu, A. Manigandan, S. Sathiyakumar, K. Kothandaraman, K. Jayabalan, Structural, electrical and magnetic studies on Y-Fe-O system. J. Rare Earths 27, 1013–1017 (2009)

    Article  Google Scholar 

  19. E. Suard, A. Maignan, V. Caignaert, B. Raveau, Effect of Y-Ca substitution upon superconductivity in the oxide YBa2Cu3-xCoxO7-δ. Physica C 200, 43–49 (1992)

    Article  CAS  Google Scholar 

  20. J. Tőpfer, J.B. Goodenough, LaMnO3+δ revisited. J. Solid State Chem. 130, 117–128 (1997)

    Article  Google Scholar 

  21. H.I. Adiguzel, M.A. Aksan, M.E. Yakinci, A study on the thermoelectric power and thermal conductivity properties of the Y1-xNdxBa2Cu3O7-δ system. J. Mater. Process. Technol. 207, 258–264 (2008)

    Article  CAS  Google Scholar 

  22. P.A. Tanner, K.L. Wong, Synthesis and spectroscopy of lanthanide ion-doped Y2O3. J. Phys. Chem. B 108, 136–142 (2004)

    Article  CAS  Google Scholar 

  23. Y. Repelin, C. Proust, E. Husson, J.M. Beny, Vibrational spectroscopy of the C-form of yttrium sesquioxide. J. Solid State Chem. 118, 163–169 (1995)

    Article  CAS  Google Scholar 

  24. A. Ubaldini, M.M. Carnasciali, Raman characterisation of powder of cubic RE2O3 (RE = Nd, Gd, Dy, Tm and Lu), Sc2O3 and Y2O3. J. Alloys Compd. 454, 374–378 (2008)

    Article  CAS  Google Scholar 

  25. J.M. Calderon Moreno, M. Yoshimura, Characterization by Raman spectroscopy of solid solutions in the yttria-rich side of the zirconia–yttria system. Solid State Ion. 154–155, 125–133 (2002)

    Article  Google Scholar 

  26. J. Torrent, V. Barron, Diffuse reflectance spectroscopy of iron oxides. Encycl. Surf. Colloid Sci 1438–1446 (2002)

  27. X. Cao, L. Gu, Spindly cobalt ferrite nanocrystals: preparation, characterization and magnetic properties. Nanotechnology 16, 180–185 (2005)

    Article  CAS  Google Scholar 

  28. O.M. Hemeda, A. El-Ati, Spectral studies of Co0.6Zn0.4Fe2O4 at different soaking times. Mater. Lett. 51, 42–47 (2001)

    Article  CAS  Google Scholar 

  29. R. Narkowicz, D. Suter, R. Stonies, Planar microresonators for EPR experiments. J. Magn. Reson. 175, 275–284 (2005)

    Article  CAS  Google Scholar 

  30. S.V. Demishev, A.V. Semeno, A.V. Bogach, Y.B. Paderno, N.Y. Shitsevalova, N.E. Shitsevalova, Antiferro-quadrupole resonance in CeB6. Physica B 378–380, 602–603 (2006)

    Article  Google Scholar 

  31. H. Zhou, A. Hofstaetter, D.M. Hofmann, B.K. Meyer, Magnetic resonance studies on ZnO nanocrystals. Microelectron. Eng. 66, 59–64 (2003)

    Article  CAS  Google Scholar 

  32. I. Coondoo, N. Panwar, A.K. Jha, Effect of sintering temperature on the structural, dielectric and ferroelectric properties of tungsten substituted SBT ceramics. Physica B 406, 374–381 (2011)

    Article  CAS  Google Scholar 

  33. K. Kamala Bharathi, G. Markandeyulu, Ferroelectric and ferromagnetic properties of Gd substituted nickel ferrite. J. Appl. Phys. 103, 07E309 (2008). (p 3)

  34. K. Kamala Bharathi, J. Arout Chelvane, G. Markandeyulu, Magnetoelectric properties of Gd and Nd-doped nickel ferrite. J. Magn. Magn. Mater. 321, 3677–3680 (2009)

    Article  CAS  Google Scholar 

  35. K. Jawahar, R.N.P. Choudhary, Structural, thermal and dielectric properties of La3/2Bi3/2Fe5O12. Solid State Commun. 142, 449–452 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venugopalan Anbarasu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anbarasu, V., Manigandan, A., Karthik, T. et al. Inducing multiferroic behaviour in the diamagnetic Y2O3 system. J Mater Sci: Mater Electron 23, 1201–1209 (2012). https://doi.org/10.1007/s10854-011-0573-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-011-0573-9

Keywords

Navigation