Skip to main content
Log in

Optimisation of pH of cadmium chloride post-growth-treatment in processing CDS/CDTE based thin film solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The role of Chlorine-based activation in the production of high quality CdS/CdTe photovoltaic have been well discussed and explored with an overlook of the effect of Cadmium chloride (CdCl2) post-growth treatment acidity on the property of the fabricated devices. This work focuses on the optimisation of CdCl2 post-growth treatment pH as it affects both the material and fabricated device properties of all-electrodeposited multilayer glass/FTO/n-CdS/n-CdTe/p-CdTe configuration. CdCl2 treatments with acidity ranging from pH1 to pH4 were explored. The properties of the ensued CdTe layer were explored using optical, morphological, compositional structural and electrical property analysis, while, the effect on fabricated multilayer glass/FTO/n-CdS/n-CdTe/p-CdTe configuration were also explored using both I-V and C-V measurements. Highest improvements in the optical, morphological, compositional and structural were observed at pH2 CdCl2 post-growth treatment with an improvement in absorption edge, grain size, crystallinity and crystallite size. Conductivity type conversions from n-CdTe to p-CdTe, increase in pin-hole density and collapse of the absorption edge were observed after pH1 CdCl2 treatment. The highest fabricated solar cell efficiency of 13% was achieved using pH2 CdCl2 treatment as compared to other pH values explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. I.M. Dharmadasa, Review of the CdCl2 treatment used in CdS/CdTe thin film solar cell development and new evidence towards improved understanding. Coatings 4(2), 282–307 (2014)

    Article  Google Scholar 

  2. S. Mazzamuto, L. Vaillant, A. Bosio, N. Romeo, N. Armani, G. Salviati, “A study of the CdTe treatment with a Freon gas such as CHF2Cl”. Thin Solid Films 516, 7079–7083 (2008)

    Article  Google Scholar 

  3. J.D. Major, L. Bowen, R.E. Treharne, L.J. Phillips, K. Durose, “NH 4 Cl Alternative to the CdCl 2 Treatment Step for CdTe Thin-Film Solar Cells”. IEEE J 5(1), 386–389 (2015)

    Google Scholar 

  4. B. Maniscalco, A. Abbas, J.W. Bowers, P.M. Kaminski, K. Bass, G. West, J.M. Walls, “The activation of thin film CdTe solar cells using alternative chlorine containing compounds”. Thin Solid Films 582, 115–119 (2015)

    Article  Google Scholar 

  5. A. Bosio, N. Romeo, S. Mazzamuto, V. Canevari, “Polycrystalline CdTe thin films for photovoltaic applications”. Prog. Cryst. Growth Charact. Mater 52(4), 247–279 (2006)

    Article  Google Scholar 

  6. B.M. Başol, “Processing high efficiency CdTe solar cells”. Int. J. Sol. Energy 12(1–4), 25–35 (1992)

    Google Scholar 

  7. B.E. McCandless, I. Youm, R.W. Birkmire, “Optimization of vapor post-deposition processing for evaporated CdS/CdTe solar cells”. Prog. Photovolt. Res. Appl 7(1), 21–30 (1999)

    Article  Google Scholar 

  8. H. Bayhan, C. Ercelebi, “Effects of post deposition treatments on vacuum evaporated CdTe thin films and CdS/CdTe heterojunction devices”. Turk. J. Phys. 22, 441–451 (1998)

    Google Scholar 

  9. N.A. Abdul-Manaf, A.R. Weerasinghe, O.K. Echendu, I.M. Dharmadasa, “Electro-plating and characterisation of cadmium sulphide thin films using ammonium thiosulphate as the sulphur source”. J. Mater. Sci. Mater. Electron. 26(4), 2418–2429 (2015)

    Article  Google Scholar 

  10. H. Lin, W. Irfan, Xia, H.N. Wu, Y. Gao, C.W. Tang, “MoOx back contact for CdS/CdTe thin film solar cells: Preparation, device characteristics, and stability”. Sol. Energy Mater. Sol. Cells 99, 349–355 (2012)

    Article  Google Scholar 

  11. A.A. Ojo, I.M. Dharmadasa, 15.3% efficient graded bandgap solar cells fabricated using electroplated CdS and CdTe thin films. Sol. Energy 136, 10–14 (2016)

    Article  Google Scholar 

  12. H.I. Salim, V. Patel, A. Abbas, J.M. Walls, I.M. Dharmadasa, “Electrodeposition of CdTe thin films using nitrate precursor for applications in solar cells”. J. Mater. Sci. Mater. Electron. 26(5), 3119–3128 (2015)

    Article  Google Scholar 

  13. J. Woodcock, A. Turner, M. Ozsan, J. Summers, Thin film solar cells based on electrodeposited CdTe. Photovolt. Spec. Conf. 1991., Conf. Rec. Twenty Second IEEE, pp. 842–847 (1991)

  14. I.M. Dharmadasa, C.J. Blomfield, C.G. Scott, R. Coratger, F. Ajustron, J. Beauvillain, Metal/n-CdTe interfaces: A study of electrical contacts by deep level transient spectroscopy and ballistic electron emission microscopy, Solid. State. Electron. 42(4), 595–604 (1998)

  15. I.M. Dharmadasa, Recent developments and progress on electrical contacts to CdTe, CdS and ZnSe with special reference to barrier contacts to CdTe. Prog. Crystal Growth Charact. Mater. 36(4), pp. 249–290, (1998)

    Article  Google Scholar 

  16. J. Tauc, A. Menth, States in the gap. J. Non. Cryst. Solids 8–10, 569–585 (1972)

    Article  Google Scholar 

  17. V. Krishnakumar, J. Han, A. Klein, W. Jaegermann, CdTe thin film solar cells with reduced CdS film thickness. Thin Solid Films 519(21), 7138–7141 (2011)

    Article  Google Scholar 

  18. D.A. Wood, K.D. Rogers, D.W. Lane, D.A. Wood, K.D. Rogers, J.A. Coath, “Optical and structural characterization of CdS x Te 1- x thin films for solar cell applications”. J. Phys. Condens. Matter 12(19), 4433 (2000)

    Article  Google Scholar 

  19. G. Carotenuto, M. Palomba, S. De Nicola, G. Ambrosone, U. Coscia, “Structural and photoconductivity properties of Tellurium/PMMA Films.” Nanoscale Res. Lett. 10(1), 1007 (2015)

    Article  Google Scholar 

  20. B. Abad, M. Rull-Bravo, S.L. Hodson, X. Xu, M. Martin-Gonzalez, “Thermoelectric properties of electrodeposited tellurium films and the sodium lignosulfonate effect”. Electrochim. Acta 169, 37–45 (2015)

    Article  Google Scholar 

  21. S. Chun, S. Lee, Y. Jung, J.S. Bae, J. Kim, D. Kim, “Wet chemical etched CdTe thin film solar cells”. Curr. Appl. Phys. 13(1), 211–216 (2013)

    Article  Google Scholar 

  22. J. Nowotny, T. Bak, M. Nowotny, L. Sheppard, “Titanium dioxide for solar-hydrogen I. Functional properties”. Int. J. Hydrogen Energy 32(14), 2609–2629 (2007)

    Article  Google Scholar 

  23. N. Abdul-Manaf, H. Salim, M. Madugu, O. Olusola, I. Dharmadasa, “Electro-plating and characterisation of CdTe thin films using CdCl2 as the Cadmium source”. Energies 8(10), 10883–10903 (2015)

    Article  Google Scholar 

  24. P.J. Sellin, A.W. Dazvies, A. Lohstroh, M.E. Özsan, J. Parkin, Drift mobility and mobility-lifetime products in CdTe:Cl grown by the travelling heater method. IEEE Trans. Nucl. Sci. 52(6), 3074–3078 (2005)

    Article  Google Scholar 

  25. T. Soga, Nanostructured materials for solar energy conversion. Elsvier Sci. 2030, 614 (2004)

    Google Scholar 

  26. I.M. Dharmadasa, Advances in thin-film solar cells. (Pan Stanford, Singapore, 2013)

    Google Scholar 

  27. J. Verschraegen, M. Burgelman, J. Penndorf, Temperature dependence of the diode ideality factor in CuInS2-on-Cu-tape solar cells. Thin Solid Films 480–481, 307–311 (2005)

    Article  Google Scholar 

  28. W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32(3), 510 (1961)

    Article  Google Scholar 

  29. A. De Vos, “Detailed balance limit of the efficiency of tandem solar cells,” J. Phys. D 13(5), pp. 839–846, (2000)

    Article  Google Scholar 

  30. R.B. Godfrey, M.A. Green, Enhancement of MIS solar-cell ‘efficiency’ by peripheral collection. Appl. Phys. Lett. 31(10), 705–707 (1977)

    Article  Google Scholar 

  31. B.M. Basol, High-efficiency electroplated heterojunction solar cell. J. Appl. Phys 55(1984), 601–603 (1984)

    Article  Google Scholar 

  32. I.M. Dharmadasa, A.A. Ojo, H.I. Salim, R. Dharmadasa, “Next generation solar cells based on graded bandgap device structures utilising rod-type nano-materials”. Energies 8(6), 5440–5458 (2015)

    Article  Google Scholar 

  33. D. Congreve, J. Lee, N. Thompson, and E. Hontz, External quantum efficiency above 100% in a singlet-exciton-fission–based organic photovoltaic cell. Science 340(6130), pp. 334–337 (2013)

    Article  Google Scholar 

  34. N.J.L.K. Davis, M.L. Bohm, M. Tabachnyk, F. Wisnivesky-Rocca-Rivarola, T.C. Jellicoe, C. Ducati, B. Ehrler, and N.C. Greenham, “Multiple-exciton generation in lead selenide nanorod solar cells with external quantum efficiencies exceeding 120%,” Nat. Commun. 6(2), pp. 81–87 (2015)

    Google Scholar 

  35. I. Strzalkowski, S. Joshi, C.R. Crowell, Dielectric constant and its temperature dependence for GaAs, CdTe, and ZnSe. Appl. Phys. Lett. 28(6), 350–352 (1976)

    Article  Google Scholar 

  36. B.M. Basol, B. McCandless, Brief review of cadmium telluride-based photovoltaic technologies. J. Photonics Energy 4, 40996 (2014)

    Article  Google Scholar 

  37. M. Gloeckler, I. Sankin, Z. Zhao, “CdTe solar cells at the threshold to 20% efficiency”. IEEE J. Photovolt. 3(4), 1389–1393 (2013)

    Article  Google Scholar 

  38. T.J. Coutts, S. Naseem, “High efficiency indium tin oxide/indium phosphide solar cells.” Appl. Phys. Lett. 46(2), 164–166 (1985)

    Article  Google Scholar 

Download references

Acknowledgements

Authors will like to thank members of the SHU Solar Energy Group comprising of Salim Hussein, Olusola Olajide, Azlian Abdul-Manaf and Mohammed Madugu for their contributions to this work. The principal author will also like to thank Sheffield Hallam University, Ekiti State University and TETFund Nigeria for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ojo.

Ethics declarations

Conflict of interest

We have no conflict of interest in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ojo, A.A., Dharmadasa, I.M. Optimisation of pH of cadmium chloride post-growth-treatment in processing CDS/CDTE based thin film solar cells. J Mater Sci: Mater Electron 28, 7231–7242 (2017). https://doi.org/10.1007/s10854-017-6404-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6404-x

Keywords

Navigation