Skip to main content
Log in

Electro-plating and characterisation of cadmium sulphide thin films using ammonium thiosulphate as the sulphur source

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cadmium sulphide (CdS) thin films have been successfully prepared from an aqueous electrolyte bath containing CdCl2 and ammonium thiosulphate ((NH4)2S2O3) using electrodeposition technique. The structural, compositional, optical, morphological and electrical properties of these thin films have been characterized using X-ray diffraction (XRD), Raman spectroscopy, energy dispersive X-ray spectroscopy, UV–Vis spectrophotometry, scanning electron microscopy (SEM), atomic force microscopy (AFM), photoelectrochemical cell and D.C. current–voltage (I–V) measurements. The optimum deposition cathodic potential has been observed at 1,455 mV, in a 2-electrode system with respect to carbon anode. Structural analysis using XRD shows a mixture of hexagonal and cubic phases in the as-deposited CdS samples and a phase transformation to the hexagonal structure occurred after heat treatment at 400 °C for 20 min. Optical studies demonstrate an improvement in the band edge, producing 2.42 eV for the band gap of the films after heat treatment. The heat treated CdS thin films show better transmission for wavelengths longer than 500 nm. SEM and AFM show that the heat-treated samples are more uniform, smoother and have larger grain size. Electrical studies confirm that the CdS thin films have n-type electrical conductivity and heat treated CdS thin films have resistivities of the order of 105 Ω cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. D. Lincot, M. Fromen, H. Catchet, Advance in Electrochemical Science and Engineering, vol. 6 (Wiley, New York, 2008), p. 118

    Google Scholar 

  2. S.K. Das, G.C. Morris, Sol. Energy Mater. Sol. Cells 28, 305 (1993)

    Article  Google Scholar 

  3. R.K. Sharma, K. Jain, A.C. Rastogi, Curr. Appl. Phys. 3, 199 (2003)

    Article  Google Scholar 

  4. A. Ziabari, F.E. Ghodsi, Sol. Energy Mater. Sol. Cells 105, 249 (2012)

    Article  Google Scholar 

  5. H. Metin, R. Esen, J. Cryst. Growth 258, 141 (2003)

    Article  Google Scholar 

  6. A. Hasnat, J. Podder, J. Sci. Res. 4(1), 11 (2012)

    Google Scholar 

  7. K. Yamaguchi, T. Yoshida, T. Sugiura, H. Minoura, J. Phys. Chem. B 102, 9677 (1998)

    Article  Google Scholar 

  8. D.G. Diso, G.E.A. Muftah, V. Patel, I.M. Dharmadasa, J. Electrochem. Soc. 157(6), 647 (2010)

    Article  Google Scholar 

  9. M.N. Mammadov, A.S. Aliyev, M. Elrouby, Int. J. Thin Film Sci. Technol. 53(2), 43 (2012)

    Google Scholar 

  10. P.C. Hayes, S.H. Algie, Process Principles in Minerals and Materials Production, (1993) http://courses.chem.indiana.edu/c360/documents/redpot.pdf. Accessed 21 May 2014

  11. I. Kaur, D.K. Pandya, K.L. Chopra, J. Electrochem. Soc. 127(4), 943 (1980)

    Article  Google Scholar 

  12. G. Mustafa, M.R.I. Chowdhury, D.K. Saha, S. Hussain, O. Islam, Dhaka Univ. J. Sci. 60(2), 283 (2012)

    Article  Google Scholar 

  13. M. Ichimura, F. Goto, E. Arai, J. Appl. Phys. 85(10), 7411 (1999)

    Article  Google Scholar 

  14. F.C. Campbell, Phase Diagram: Understanding the Basics, 1st edn. (ASM International, USA, 2012), pp. 73–81

    Google Scholar 

  15. M. Schulz, W. von der Osten, U. Rossler, O. Madelung, Landolt-Bornstein: Numerical Data and Functional Relationships in Science and Technology, 1st edn. (Springer, New York, 1987), pp. 33–56

    Google Scholar 

  16. T.L. Chu, S.S. Chu, C. Ferekides, C.Q. Wu, J. Britt, C. Wang, J. Appl. Phys. 70, 7608 (1991)

    Article  Google Scholar 

  17. K. Kitahara, T. Ishii, J. Suzuki, T. Bessyo, N. Watanabe, Int. J. Spectrosc. (2011). doi:10.1155/2011/632139

    Google Scholar 

  18. H. Oumous, H. Hadiri, Thin Solid Films 386(1), 87 (2001)

    Article  Google Scholar 

  19. S. Preusser, M. Cocivera, Sol. Energy Mater. 20(1), 1 (1990)

    Article  Google Scholar 

  20. L. Tian, R. Dieckmann, J. Non-Cryst. Solids 281(1–3), 55 (2001)

    Article  Google Scholar 

  21. M.M. Smedskjaer, Q. Zheng, J.C. Mouro, M. Potuzak, S. Morup, Y. Yue, J. Non-Cryst. Solids 357(22–23), 3744 (2011)

    Article  Google Scholar 

  22. A. Osaka, S. Takao, K. Oda, J. Takada, Y. Miura, Memoirs of the Faculty of Engineering, Okayama University 24(1), 54 (1989)

  23. J. Hiie, T. Dedova, V. Valdna, K. Muska, Thin Solid Films 443, 511 (2006)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank P. Bingham, F. Fauzi, H. I. Salim, M. Madugu, O. Olusola and A. Ojo for their valuable contributions. The members at Institute of Organic Catalysis and Electrochemistry, Kazakhstan are acknowledged for their contributions on AFM characterization in this research. The main author would also like to acknowledge the Ministry of Higher Education Malaysia and National Defence University of Malaysia for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Abdul-Manaf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdul-Manaf, N.A., Weerasinghe, A.R., Echendu, O.K. et al. Electro-plating and characterisation of cadmium sulphide thin films using ammonium thiosulphate as the sulphur source. J Mater Sci: Mater Electron 26, 2418–2429 (2015). https://doi.org/10.1007/s10854-015-2700-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2700-5

Keywords

Navigation