Skip to main content
Log in

Effect of the intermediate sulfide layer on the Cu2ZnSnS4-based solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cu2ZnSnS4 (CZTS) thin-film solar cells were fabricated using Cu/Sn/Zn and Cu/SnS/Zn precursors. The precursors were prepared using a magnetron-sputtering system with subsequent annealing (sulfurization) in a sulfur atmosphere. Sulfurization was carried out at 580 °C for 1 h in an H2S/N2 environment at atmospheric pressure. The growth behavior of CZTS thin films with different precursors during sulfurization was investigated and their properties were analyzed using X-ray diffraction, scanning electron microscopy with energy-dispersive spectroscopy, and Raman spectroscopy. The CZTS thin film sulfurized using the Cu/Sn/Zn metallic precursor exhibited inhomogeneous growth with detrimental secondary phases, including Cu2S and ZnS, resulting in significant degradation in Voc, Jsc and FF. In contrast, the CZTS thin film formed using a Cu/SnS/Zn precursor showed uniform growth without secondary phases on the surface and 4.1% power conversion efficiency, which was greater than that of the solar cell formed with the metallic precursor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Katagiri, Cu2ZnSnS4 thin film solar cells. Thin Solid Films 480, 426 (2015)

    Google Scholar 

  2. Q. Guo, H.W. Hillhouse, R. Agrawal, Synthesis of Cu2ZnSnS4 Nanocrystal Ink and Its Use for Solar Cells. J. Am. Chem. Soc. 131, 11672 (2009)

    Article  Google Scholar 

  3. Wang W, Winkler MT, Gunawan O, Gokman T, Todorov TK, Zhu Y, Mitzi DB, Device characteristics of CZTSSe Thin film solar cells with 12.6 % efficiency. Adv. Energy Mater. 4:1301465 (2014)

    Article  Google Scholar 

  4. H. Tampo, K. Makita, H. Komaki, A. Yamada, S. Furue, S. Ishizuka, H. Shibata, K. Matsubara, S. Niki, Composition control of Cu2ZnSnSe4 based solar cells grown by coevaporation. Thin Solid Films 551, 27 (2014)

    Article  Google Scholar 

  5. B. Shin, Y. Zhu, T. Gershon, N.A. Bojarczuk, S. Guha, Epitaxial growth of kesterite Cu2ZnSnS4 on a Si(001) substrate by thermal co-evaporation. Thin Solid Films 556, 9 (2014)

    Article  Google Scholar 

  6. Gang MG, Gurav KV, Shin SW, Hong CW, Min JH, Suryawanshi MP, Vanalakar SA, Lee DS, Kim JH, A 5.1% efficient kesterite Cu2ZnSnS4 thin film solar cell prepared using modified sulfurization process. Phys. Status Solidi C 12:713 (2015)

    Article  Google Scholar 

  7. J. He, L. Sun, Y. Chen, J. Jiang, P. Yang, J. Chu, Influence of sulfurization pressure on Cu2ZnSnS4 thin films and solar cells prepared by sulfurization of metallic precursors. J. Power Sources 273, 600 (2015)

    Article  Google Scholar 

  8. J. Wang, S. Li, J. Cai, B. Shen, Y. Ren, G. Qin, Cu2ZnSnS4 thin films: Facile and cost-effective preparation by RF-magnetron sputtering and texture control. J. Alloys Compd. 552, 418 (2013)

    Article  Google Scholar 

  9. G. Brammertz, Y. Ren, M. Buffiere, S. Mertens, J. Hendrickx, H. Marko, A.E. Zaghi, N. Lenaers, C. Koble, J. Vleugels, M. Meuris, J. Poortmans, Electrical characterization of Cu2ZnSnSe4 solar cells from selenization of sputtered metal layers. Thin Solid Films 535, 348 (2013)

    Article  Google Scholar 

  10. R. Nakamura, K. Tanaka, H. Uchiki, K. Jimbo, T. Washio, H. Katagiri, Cu2ZnSnS4 thin film deposited by sputtering with Cu2ZnSnS4 compound target. Jpn. J. Appl. Phys. 53, 02BC10 (2014)

    Article  Google Scholar 

  11. K.V. Gurav, S.M. Pawar, S.W. Shin, M.P. Suryawanshi, G.L. Agawane, P.S. Patil, J.H. Moon, J.H. Yun, J.H. Kim, Electrosynthesis of CZTS films by sulfurization of CZT precursor-Effect of soft annealing treatment. Appl. Surf. Sci. 283, 74 (2013)

    Article  Google Scholar 

  12. J. Iljina, R. Zhang, M. Ganchev, T. Raadik, O. Volobujeva, M. Altosaar, R. Traksmaa, E. Mellikov, Formation of Cu2ZnSnS4 absorber layers for solar cells by electrodeposition-annealing route. Thin Solid Films 537, 85 (2013)

    Article  Google Scholar 

  13. Miwaki EM, Ibrahim K, Ali MKM, Farrukh MA, Mohamed AS, Influence of triangle wave pulse on the properties of Cu2ZnSnS4 thin films prepared by single step electrodeposition. Sol. Energy Mater. Sol. Cells 130, 91 (2014)

  14. K.D. Lee, S.W. Seo, D.K. Lee, H. Kim, J.H. Jeong, M.J. Ko, B.S. Kim, D.H. Kim, J.Y. Kim, Preparation of Cu2ZnSnS4 thin films via electrochemical deposition and rapid thermal annealing. Thin Solid Films 546, 294 (2013)

    Article  Google Scholar 

  15. J.J. Scragg, P.J. Dale, L.M. Peter, Synthesis and characterization of Cu2ZnSnS4 absorber layers by an electrodeposition annealing route. Thin Solid Films 517, 2481 (2009)

    Article  Google Scholar 

  16. Ge J, Jiang J, Yang P, Peng C, Huang Z, Zuo S, Yang L, Chu J, A 5.5% efficient co-electrodeposited ZnO-CdS-Cu2ZnSnS4-Mo thin film solar cell. Sol. Energy Mater. Sol. Cells 125, 20 (2014)

  17. Miskin CK, Yang WC, Hages CJ, Carter NJ, Joglekar CS, Stach EA, Agrawal R, 9.0% efficient Cu2ZnSn(S, Se)4 solar cells from selenized nanoparticle inks. Prog. Photovolt Res. Appl. 23, 654 (2015)

    Article  Google Scholar 

  18. Z. Su, K. Sun, Z. Han, H. Cui, F. Liu, Y. Lai, J. Li, X. Hao, Y. Liu, M.A. Green, Fabrication of Cu2ZnSnS4 solar cells with 5.1% efficiency via thermal decomposition and reaction using a non-toxic sol–gel route. J. Mater. Chem. A 2, 500 (2014)

    Article  Google Scholar 

  19. H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, W.S. Maw, T. Fukano, T. Ito, T. Motohiro, Enhanced conversion efficiencies of Cu2ZnSnS4-based thin film solar cells by using preferential etching technique. Appl. Phys. Exp. 1, 041201 (2008)

    Article  Google Scholar 

  20. T.P. Dhakal, C.Y. Peng, R.R. Tobias, R. Dasharathy, C.R. Westgate, Characterization of a CZTS thin film solar cell grown by sputtering method. Sol. Energy 100, 23 (2014)

    Article  Google Scholar 

  21. A. Emrani, P.P. Rajbhandari, T.P. Dhakal, C.R. Westgate, Cu2ZnSnS4 solar cells fabricated by short-term sulfurization of sputtered Sn-Zn-Cu precursors under an H2S atmosphere. Thin Solid Films 577, 62 (2015)

    Article  Google Scholar 

  22. J.J. Scragg, D.M. Berg, P.J. Dale, A 3.2% efficient kesterite device from electrodeposited stacked elemental layers. J. Electro Chem. 646, 52 (2010)

    Article  Google Scholar 

  23. Ahmed S, Reuter KB, Gunawan O, Guo L, Romankiw LT, Deligianni H, A High Efficiency Electrodeposited Cu2ZnSnS4 Solar Cell. Adv. Energy Mater. 2, 253 (2012)

    Article  Google Scholar 

  24. H. Katagiri, N. Ishigaki, T. Ishida, K. Saito, Characterization of Cu2ZnSnS4 thin films prepared by vapor phase sulfurization. Jpn. J. Appl. Phys. 40, 500 (2001)

    Article  Google Scholar 

  25. J.J. Scragg, P.J. Dale, L.M. Peter, Synthesis and characterization of Cu2ZnSnS4 absorber layers by an electrodeposition-annealing route. Thin Solid Films 517, 2481 (2009)

    Article  Google Scholar 

  26. A. Emrani, P. Vasekar, C.R. Westgate, Effects of sulfurization temperature on CZTS thin film solar cell performances. Sol. Energy 98, 335 (2013)

    Article  Google Scholar 

  27. A. Khalkar, K.S. Lim, S.M. Yu, S.P. Patole, J.B. Yoo, Deposition of Cu2ZnSnS4 thin films by magnetron sputtering and subsequent sulphurization. Electron Mater. Lett. 10, 43 (2014)

    Article  Google Scholar 

  28. E. Alfonso, J. Olaya, G.I. Cubillos, in Thin film growth through sputtering technique and its applications, ed. by M.R.B. Andreeta. Crystallization – Science and Technology, Rijeka, (In Tech, Croatia, 2012), pp. 397–432

    Google Scholar 

  29. P.A. Fernandes, PMP Salome, A.F. Cunha, Study of polycrystalline Cu2ZnSnS4 films by Raman scattering. J. Alloys Compd. 509, 7600 (2011)

    Article  Google Scholar 

  30. Walsh A, Chen S, Wei SH, Gong XG, Kesterite Thin-Film Solar Cells : Advances in Materials Modelling of Cu2ZnSnS4. Adv. Energy Mater. 2, 400 (2012)

    Article  Google Scholar 

  31. Y. Wang, H. Gong, Low temperature synthesized quaternary chalcogenide Cu2ZnSnS4 from nano-crystallite binary sulfides. J. Electrochem. Soc. 158, H800 (2011)

    Article  Google Scholar 

  32. M.C. Johnson, C. Wrasman, X. Zhang, M. Manno, C. Leighton, E.S. Aydil, Self-regulation of Cu/Sn ratio in the synthesis of Cu2ZnSnS4 films. Chem. Mater. 27, 2507 (2015)

    Article  Google Scholar 

  33. J.H. Han, S.W. Shin, M.G. Gang, J.H. Kim, J.Y. Lee, Crystallization behavior of co-sputtered Cu2ZnSnS4 precursor prepared by sequential sulfurization processes. Nanotechnology 24, 095706 (2013)

    Article  Google Scholar 

  34. J.J. Scragg, J.T. Watjen, M. Edoff, T. Ericson, T. Kubart, C. Platzer-Bjorkman, A detrimental reaction at the Molybdenum back contact in CZTSSe thin film solar cells. J. Am. Chem. Soc. 134, 19330 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the “Human Resources Program in Energy Technology” of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), with financial resource granted from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20154030200870). This work was also supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2012M3A7B4049986).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Beom Yoo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, S.M., Lim, KS., Shin, DW. et al. Effect of the intermediate sulfide layer on the Cu2ZnSnS4-based solar cells. J Mater Sci: Mater Electron 28, 5696–5702 (2017). https://doi.org/10.1007/s10854-016-6241-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6241-3

Keywords

Navigation