Skip to main content
Log in

Optimization of sulfurization time for properties of Cu2ZnSnS4 films and cells by sputtering method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cu2ZnSnS4 (CZTS) thin films have been fabricated by sputtering ZnS/Sn/CuS and following the sulfurization process. In order to study the optimal sulfurization process, the effects of sulfurization time on the quality of CZTS thin films and solar cells are investigated. The sulfurization process was carried out at 580 °C for 10, 20, 30, 40 and 50 min respectively with a ramp rate of 45 °C min−1 in details. The results show that sulfurization time of 30 min provides a favorable sulfurization environment to form kesterite CZTS thin films owing to the highest crystallinity, dense and smooth surface morphology with larger grains and the best optical–electrical properties. Finally, the CZTS solar cells are fabricated with the structure of SLG/Mo/CZTS/CdS/i-ZnO/ITO/Al, and the best power conversion efficiency of 5.41% was obtained with an open-circuit voltage of 599 mV, a short-circuit current density of 18.71 mA cm−2 and a fill factor of 44% under the annealing time for 30 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C.A. Wolden, J. Kurtin, J.B. Baxter, I. Repins, S.E. Shaheen, J.T. Torvik, A.A. Rockett, V.M. Fthenakis, E.S. Aydil, J. Vac. Sci. Technol. A 29, 030801 (2011)

    Article  Google Scholar 

  2. M. Woodhouse, A. Goodrich, R. Margolis, T.L. James, M. Lokanc, R. Eggert, IEEE J. Photovolt. 3, 833 (2013)

    Article  Google Scholar 

  3. G. Kavlak, J. McNerney, R.L. Jaffe, J.E. Trancik, Energy Environ. Sci. 8, 1651 (2015)

    Article  Google Scholar 

  4. S.E. Habas, H.A.S. Platt, D.S. Ginley, M.F.A.M.V. Hest, Chem. Rev. 110, 6571 (2010)

    Article  CAS  Google Scholar 

  5. M.P. Suryawanshi, G.L. Agawane, S.M. Bhosale, S.W. Shin, P.S. Patil, J.H. Kim, A.V. Moholkar, Mater. Technol. 28, 98 (2013)

    Article  CAS  Google Scholar 

  6. D. Aldakov, A. Lefrançois, P. Reiss, J. Mater. Chem. C 1, 3756 (2013)

    Article  CAS  Google Scholar 

  7. P.K. Sarswat, M. Snure, M.L. Free, A. Tiwari, Thin Solid Films 520, 1694 (2012)

    Article  CAS  Google Scholar 

  8. L. Bo, S. Cheng, Y. Lai, H. Zhou, J. Yu, Q. Zheng, Thin Solid Films 573, 117 (2014)

    Article  Google Scholar 

  9. H. Katagiri, K. Jimbo, W.S. Maw, K. Oishi, M. Yamazaki, H. Araki, A. Takeuchi, Thin Solid Films 517, 2455 (2009)

    Article  CAS  Google Scholar 

  10. F. Liu, J. Huang, K. Sun, C. Yan, Y. Shen, NPG Asia Mater. 9, e401 (2017)

    Article  CAS  Google Scholar 

  11. S.-Y. Lin, C. Hägglund, Y. Ren, J.S.J. Scragg, J.K. Larsen, C. Frisk, K. Rudisch, S. Englund, C. Platzer-Björkman, Sol. Energy Mater. Sol. Cells 149, 170 (2016)

    Article  Google Scholar 

  12. B. Shin, O. Gunawan, Y. Zhu, A. Nestor. S. Bojarczuk, J. Chey, S. Guha, Prog. Photovolt. Res. Appl. 21, 72 (2013)

    Article  CAS  Google Scholar 

  13. F. Biccari, R. Chierchia, M. Valentini, P. Mangiapane, E. Salza, C. Malerba, Energy Procedia 10, 187 (2011)

    Article  CAS  Google Scholar 

  14. J. Wang, S. Li, J. Cai, B. Shen, Y. Ren, Y. Ren, G. Qin, J. Alloys Compd. 552, 418 (2013)

    Article  CAS  Google Scholar 

  15. C. Yan, J. Chen, F. Liu, N. Song, H. Cui, B.K. Ng, J.A. Stride, X. Hao, Alloys Compd. 610, 486 (2014)

    Article  CAS  Google Scholar 

  16. Y.B.K. Kumar, P.U. Bhaskar, G.S. Babu, V.S. Raja, Phys. Status Solidi Appl. Mater. 207, 149 (2009)

    Article  Google Scholar 

  17. M. Jiang, Y. Li, R. Dhakal, X. Yan, J. Photon. Energy 1, 232 (2011)

    Article  Google Scholar 

  18. K. Kazuya Maeda, Y. Tanakan, H. Fukui, Uchiki, Sol. Energy Mater. Sol. Cells 95, 2855 (2011)

    Article  Google Scholar 

  19. S.A. Vanalakar, G.L. Agawane, S.W. Shin, M.P. Suryawanshi, K.V. Gurav, Alloys Compd. 619, 109 (2015)

    Article  CAS  Google Scholar 

  20. H. Chen, Q. Ye, X. He, J. Ding, Y. Zhang, J. Han, J. Liu, C. Liao, J. Mei, W. Lau, Green Chem. 16, 3841 (2014)

    Article  CAS  Google Scholar 

  21. J. Tao, K. Zhang, C. Zhang, L. Chen, H. Gao, Chem. Commun. 51, 10337 (2015)

    Article  CAS  Google Scholar 

  22. Y.H. Jo, B.C. Mohanty, Sol. Energy Mater. Sol. Cells 132, 136 (2015)

    Article  CAS  Google Scholar 

  23. A. Fairbrother, X. Fontane, Sol. Energy Mater. Sol. Cells 112, 97 (2013)

    Article  CAS  Google Scholar 

  24. K. Jimbo, R. Kimura, Thin Solid Films 515, 5997 (2007)

    Article  CAS  Google Scholar 

  25. S.M. Pawar, A.I. Inamdar, K.V. Gurav, Vacuum 104, 57 (2014)

    Article  CAS  Google Scholar 

  26. J.C. González, P.A. Fernandes, G.M. Ribeiro, Sol. Energy Mater. Sol. Cells 123, 58 (2014)

    Article  Google Scholar 

  27. S. Lopez-Marino, M. Placidi, A. Perez-Tomas, J. Llobet, V. Izquierdo-Roca, X. Fontane, J. Mater. Chem. A 29, 8338 (2013)

    Article  Google Scholar 

  28. Z.-S. Li, S.-R. Wang, Z. Jiang, M. Yang, Y.-L. Lu, S.-J. Liu, Q.-C. Zhao, R.-T. Hao, Physica B 502, 56 (2016)

    Article  CAS  Google Scholar 

  29. W. Jiang Zhi, L. Shurong, Z.Y. Min, L. Sijia, Lu Yilei, Z. Qichen, H. Ruiting, Mater. Sci. Semicond. Process. 57, 239 (2017)

    Article  Google Scholar 

  30. Z. Su, C. Yan, K. Sun, Z. Han, F. Liu, J. Liu, Y. Lai, J. Li, Y. Liu, Appl. Surf. Sci. 258, 7678 (2012)

    Article  CAS  Google Scholar 

  31. D. Tiwari, T.K. Chaudhuri, A. Ray, K.D. Tiwari, Thin Solid Films 551, 42 (2014)

    Article  CAS  Google Scholar 

  32. E. Tayfur Kucukomeroglu, C. Bacaksiz, Terzioglu, A. Varicli, Thin Solid Films 516, 2913 (2008)

    Article  Google Scholar 

  33. J. Tao, L. Chen, H. Cao, C. Zhang, J. Liu, J. Mater. Chem. A 4, 3798 (2016)

    Article  CAS  Google Scholar 

  34. X. Yu, A. Ren, F. Wang, C. Wang, J. Zhang, W. Wang, L. Wu, W. Li, G. Zeng, L. Feng, Int. J. Photoenergy 12, 976 (2014)

    Google Scholar 

  35. M.Y. Valakh, V.M. Dzhagan, I.S. Babichuk, X. Fontane, A. Perez-Rodriquez, S. Schorr, JETP Lett. 98, 255 (2013)

    Article  CAS  Google Scholar 

  36. T. Gürel, C. Sevik, Çaǧın, Tahir, Phys. Rev. B 84, 896 (2011)

    Article  Google Scholar 

  37. V.T. Tiong, J. Bell, H. Wang, Beilstein J. Nanotechnol. 5, 438 (2014)

    Article  Google Scholar 

  38. V.M. Dzhagan, A.P. Litvinchuk, M. Kruszynska, J. Kolny-Olesiak, M.Y. Valakh, D.R.T. Zahn, J. Phys. Chem. C 118, 27554 (2014)

    Article  CAS  Google Scholar 

  39. K. Maeda, K. Tanaka, Y. Nakano, Y. Fukui, H. Uchiki, J. Appl. Phys. 50, 05FB09 (2011)

    Article  Google Scholar 

  40. S. Chen, X.G. Gong, A. Walsh, S.H. Wei, Appl. Phys. Lett. 96, 021902 (2010)

    Article  Google Scholar 

  41. S. Chen, J.-H. Yang, X.G. Gong, A. Walsh, S.H. Wei, Phys. Rev. B 81, 1842 (2010)

    Google Scholar 

  42. J.J. Scragg, P.J. Dale, L.M. Peter, G. Zoppi, I. Forbes, Phys. Status Solidi B 245, 1772 (2008)

    Article  CAS  Google Scholar 

  43. G. Jie, J. Jiang, P. Yang, P. Cheng, Z. Huang, S. Zuo, Sol. Energy Mater. Sol. Cells 125, 20 (2014)

    Article  Google Scholar 

  44. E.M. Mkawi, K. Ibrahim, M.K.M. Ali, M.A. Farrukh, A.S. Mohamed, Sol. Energy Mater. Sol. Cells 130, 91 (2014)

    Article  CAS  Google Scholar 

  45. J.J. Scragg, T. Kubart, J.T. .Watjen, T. Ericson, M.K. Linnarsson, C. Platzer-Bjorkman, Chem. Mater. 25, 3162 (2013)

    Article  CAS  Google Scholar 

  46. J.P. Leitao, N.M. Santos, P.A. Fernandes, P.M.P. Salome, A.F. Cunha, J.C. Gonzalez, F.M. Matinaga, Thin Solid Films 519, 7390 (2011)

    Article  CAS  Google Scholar 

  47. S.W. Shin, S.M. Pawar, C.Y. Park, J.H. Yun, J.H. Moon, J.H. Kim, J.Y. Lee, Sol. Energy Mater. Sol. Cells. 95, 3202 (2011)

    Article  CAS  Google Scholar 

  48. C. Yang, M. Qin, Y. Wang, D. Wan, F. Huang, J. Lin, Sci. Rep. 3, 1286 (2013)

    Article  Google Scholar 

  49. S.C. Riha, B.A. Parkinson, A.L. Prieto, Am. Chem. Soc. 131, 12054 (2009)

    Article  CAS  Google Scholar 

  50. J. Llanos, A. Buljan, C. Mujica, R. Ramı´rez, J. Alloys Compd. 234, 40 (1996)

    Article  CAS  Google Scholar 

  51. J. Ge, P. Koirala, C.R. Grice, P.J. Roland, Y. Yu, X. Tan, R.J. Ellingson, R.W. Collins, Y. Yan, Adv. Energy Mater. 7, 1601803 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by collaborate Innovation Center of Research and Development of Renewable Energy in the Southwest Area (Grant No. 05300205020516009) and the National Natural Science Foundation of China (Grant No. 61167003), and also by key project of National and International Scientific and Technological cooperation (Grant No. 2011DFA62380). The authors are thankful for Modern Analysis and Testing Center of Yunnan University providing the scanning electron micro-scopy and Raman spectrometer for all experimental results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shurong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Wang, S., Ma, X. et al. Optimization of sulfurization time for properties of Cu2ZnSnS4 films and cells by sputtering method. J Mater Sci: Mater Electron 29, 19137–19146 (2018). https://doi.org/10.1007/s10854-018-0040-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0040-y

Navigation