Skip to main content
Log in

Synthesis and characterization of some ferrite nanoparticles prepared by co-precipitation method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Two different compositions of ferrites namely Ni0.53Cu0.12Zn0.35Fe2O4 and Mg0.2Cu0.3Zn0.5Fe2O4 have been synthesized by co-precipitation method and sintered at 900 °C/5h. The prepared samples are analyzed for their structural, morphology, elemental composition and magnetic properties by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray fluorescence and vibrating sample magnetometer respectively. Spinel phase, along with the hematite as an additional phase, in both samples is confirmed from the XRD characterizations results. Rietveld refinement method is employed to analyze the structural parameters of the samples. Density and saturation magnetization have found to be increased from that of undoped sample values. Homogeneous distributions of particles and well defined particle sizes are revealed from SEM studies of the samples. Maximum entropy method is employed to compute the numerical value of various sites interactions in ferrites and the findings are compared and analyzed with that of magnetic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Bhaskar, S.R. Murthy, Effect of sintering temperature on the electrical properties of Mn (1 %) added MgCuZn ferrites by microwave sintering method. J. Mater. Sci.: Mater. Electron. 24, 3292–3298 (2013)

    Google Scholar 

  2. N. Varalaxmi, K.V. Sivakumar, Studies on structural and electrical properties of ball-milled NiCuZn–MgCuZn nanocomposites ferrites. Metall. Mater. Trans. A 45A, 1579–1585 (2014)

    Article  Google Scholar 

  3. Ch. Sujatha, K. Venugopal Reddy, K. Sowri Babu, A. Ramachandra Reddy, K.H. Rao, Effects of heat treatment conditions on the structural and magnetic properties of MgCuZn nano ferrite. Ceram. Int. 38, 5813–5820 (2012)

    Article  Google Scholar 

  4. M.A. Gabal, A.M. Asiri, Y.M. AlAngari, On the structural and magnetic properties of La-substituted NiCuZn ferrites prepared using egg-white. Ceram. Int. 37, 2625–2630 (2011)

    Article  Google Scholar 

  5. H.-X. Zhou, Z. Wang, F.-Q. Huang, L.-J. Ni, J. He, A study on structure and magnetic properties of Mg–Cu–Zn ferrite synthesized by co-precipitation method. IEEE Trans. Magn. 48, 3626–3629 (2012)

    Article  Google Scholar 

  6. S.R. Murthy, Low temperature sintering of MgCuZn ferrite and its electrical and magnetic properties. Bull. Mater. Sci. 24, 379–383 (2001)

    Article  Google Scholar 

  7. P.K. Roy, J. Bera, Characterization of nanocrystalline NiCuZn ferrite powders synthesized by sol–gel auto-combustion method. J. Mater. Process. Technol. 197, 279–283 (2008)

    Article  Google Scholar 

  8. M.R. Barati, Characterization and preparation of nanocrystalline MgCuZn ferrite powders synthesized by sol–gel auto-combustion method. J. Sol-Gel. Sci. Technol. 52, 171–178 (2009)

    Article  Google Scholar 

  9. I.H. Gul, W. Ahmed, A. Maqsood, Electrical and magnetic characterization of nanocrystalline Ni–Zn ferrite synthesis by co-precipitation route. J. Magn. Magn. Mater. 320, 270–275 (2008)

    Article  Google Scholar 

  10. H.M. Zaki, S.H. Al-Heniti, T.A. Elmosalami, Structural, magnetic and dielectric studies of copper substituted nano-crystalline spinel magnesium zinc ferrite. J. Alloy. Compd. 633, 104–114 (2015)

    Article  Google Scholar 

  11. M.R. Barati, Influence of zinc substitution on magnetic and electrical properties of MgCuZn ferrite nanocrystalline powders prepared by sol–gel, auto-combustion method. J. Alloy. Compd. 478, 375–380 (2009)

    Article  Google Scholar 

  12. M.A. Gabal, S.A. Al-Thabaiti, E.H. El-Mossalamy, M. Mokhtar, Structural, magnetic and electrical properties of Ga-substituted NiCuZn nanocrystalline ferrite. Ceram. Int. 36, 1339–1346 (2010)

    Article  Google Scholar 

  13. K. Kelm, M. Mader, The symmetry of ordered cubic γ-Fe2O3 investigated by TEM. Z. Naturfosch. 61b, 665–671 (2006)

    Google Scholar 

  14. S.M. Patange, S.E. Shirsath, S.S. Jadhav, K.M. Jadhav, Cation distribution study of nanocrystalline NiFe2−xCrxO4 ferrite by XRD, magnetization and Mossbauer spectroscopy. Phys. Status Solidi A 209, 347–352 (2012)

    Article  Google Scholar 

  15. K.M. Batoo, M.S. Ansari, Low temperature-fired Ni–Cu–Zn ferrite nanoparticles through auto-combustion method for multilayer chip inductor applications. Nanoscale Res. Lett. 7, 112 (2012)

    Article  Google Scholar 

  16. H.-X. Zhou, Z. Wang, F.-Q. Huang, L.J. Ni, J. He, A study on structure and magnetic properties of Mg–Cu–Zn ferrite synthesized by co-precipitation method. IEEE Trans. Magn. 48, 3626–3629 (2012)

    Article  Google Scholar 

  17. M.A. Gabal, Y.M. Al Angari, Low-temperature synthesis of nanocrystalline NiCuZn ferrite and the effect of Cr substitution on its electrical properties. J. Magn. Magn. Mater. 322, 3159–3165 (2010)

    Article  Google Scholar 

  18. H.M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969)

    Article  Google Scholar 

  19. V. Petřiček, M. Dušek, L. Palatinus, JANA2000, the crystallographic computing system (Institute of Physics, Academy of Sciences of the Czech Republic, Praha, 2000)

    Google Scholar 

  20. P.A. Jadhav, R.S. Devan, Y.D. Kolekar, B.K. Chougule, Structural, electrical and magnetic characterizations of Ni–Cu–Zn ferrite synthesized by citrate precursor method. J. Phys. Chem. Solids 70, 396–400 (2009)

    Article  Google Scholar 

  21. Ch. Sujatha, K. Venugopal Reddy, K. Sowri Babu, A. Ramachandrareddy, K.H. Rao, Effect of sintering temperature on electromagnetic properties of NiCuZn ferrite. Ceram. Int. 39, 3077–3086 (2013)

    Article  Google Scholar 

  22. H. Bahiraei, M.Z. Shoushtari, K. Gheisari, C.K. Ong, The effect of sintering temperature on the electromagnetic properties of nanocrystalline MgCuZn ferrite prepared by sol–gel auto combustion method. Mater. Lett. 122, 129–132 (2014)

    Article  Google Scholar 

  23. D.S. Nikam, S.V. Jadhav, V.M. Khot, R.A. Bohara, C.K. Hong, S.S. Mali, S.H. Pawar, Cation distribution, structural, morphological and magnetic properties of Co1−xZnxFe2O4 (x = 0–1) nanoparticles. RSC Adv. 5, 2338–2345 (2015)

    Article  Google Scholar 

  24. N. Varalaxmi, K.V. Sivakumar, Structural, magnetic, DC–AC electrical conductivities and thermo electric studies of MgCuZn Ferrites for microinductor applications. Mater. Sci. Eng., C 33, 145–152 (2013)

    Article  Google Scholar 

  25. D.V. Kurmude, R.S. Barkule, A.V. Raut, D.R. Shengule, K.M. Jadhav, X-ray diffraction and cation distribution studies in zinc-substituted nickel ferrite nanoparticles. J. Supercond. Nov. Magn. (2013). doi:10.1007/s10948-013-2305-2

    Google Scholar 

  26. S.F. Gull, G.J. Daniel, Nature 272, 686 (1978)

    Article  Google Scholar 

  27. R. Saravanan, Y. Ono, M. Ohno, K. Isshiki, K. Ohno, T. Kajitani, Electron density distribution in GaAs using MEM. J. Phys. Chem. Solids 64, 51–58 (2003)

    Article  Google Scholar 

  28. F. Izumi, R.A. Dilanien, Recent research developments in physics, Part II, vol. 3 (Transworld Research Network, Trivandrum, 2002), pp. 699–726

    Google Scholar 

  29. K. Momma, F. Izumi, VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41, 653–658 (2008)

    Article  Google Scholar 

  30. V.K. Lakhani, T.K. Pathak, N.H. Vasoya, K.B. Modi, Structural parameters and X-ray Debye temperature determination study on copper–ferrite–aluminates. Solid State Sci. 13, 539–547 (2011)

    Article  Google Scholar 

  31. F.S. Tehrani, V. Daadmehr, A.T. Rezakhani, R.H. Akbarnejad, S. Gholipour, J. Supercond. Nov. Magn. (2012). doi:10.1007/s10948-012-1655-5

    Google Scholar 

  32. M.P. Reddy, I.G. Kim, D.S. Yoo, W. Madhuri, N.R. Reddy, K.V. SivaKumar, R.R. Reddy, Mater. Sci. Appl. 3(3), 628–632 (2012)

    Google Scholar 

  33. M.G. Naseri, E.B. Saion, M. Hashim, A.H. Shaari, H.A. Ahangar, Synthesis and characterization of zinc ferrite nanoparticles by a thermal treatment method. Solid State Commun. 151, 1031–1035 (2011)

    Article  Google Scholar 

  34. D.N. Bhosale, V.M.S. Verenkar, K.S. Rane, P.P. Bakare, S.R. Sawant, Mater. Chem. Phys. 59, 57–62 (1999)

    Article  Google Scholar 

  35. M.M. Rashad, R.M. Mohamed, M.A. Ibrahim, L.F.M. Ismail, E.A. Abdel-Aal, Magnetic and catalytic properties of cubic copper ferrite nanopowders synthesized from secondary resources. Adv. Powder Technol. 23, 315–323 (2012)

    Article  Google Scholar 

  36. A.C. Druc, A.M. Dumitrescu, A.I. Borhan, V. Nica, A.R. Iordan, M.N. Palamaru, Optimization of synthesis conditions and the study of magnetic and dielectric properties for MgFe2O4 ferrite. Cent. Eur. J. Chem. 11(8), 1330–1342 (2013)

    Google Scholar 

  37. C. Choodamani, G.P. Nagabhushana, S. Ashoka, B.D. Prasad, B. Rudraswamy, G.T. Chandrappa, Structural and magnetic studies of Mg(1 − x)ZnxFe2O4 nanoparticles prepared by a solution combustion method. J. Alloy. Compd. 578, 103–109 (2013)

    Article  Google Scholar 

  38. K. Ramakrishna, D. Ravinder, K. Vijaya Kumar, Ch. Abraham Lincon, Synthesis XRD & SEM studies of zinc substitution in nickel ferrites by citrate gel technique. World J. Condens. Matter Phys. 2, 153–159 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. B. Kannan.

Ethics declarations

Conflict of interest

The authors declares that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kannan, Y.B., Saravanan, R., Srinivasan, N. et al. Synthesis and characterization of some ferrite nanoparticles prepared by co-precipitation method. J Mater Sci: Mater Electron 27, 12000–12008 (2016). https://doi.org/10.1007/s10854-016-5347-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5347-y

Keywords

Navigation