Skip to main content
Log in

Controlling recombination kinetics of hybrid poly-3-hexylthiophene (P3HT)/titanium dioxide solar cells by self-assembled monolayers

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Self-assembled monolayers (SAMs) of benzoic acid based molecules are used to modify the metal oxide–polymer interface in a hybrid poly-3-hexylthiophene (P3HT)/TiO2 photovoltaic device structure. The effect of SAMs on current density is in accordance with expectation from the driving force for charge separation of metal oxide–polymer interface in a hybrid poly-3-hexylthiophene (P3HT)/TiO2 photovoltaic device. However, the effect of monolayers on open circuit voltage is quite unexpected from the interfacial energetics as all the monolayers improve the open circuit voltage in spite of different sign of the interfacial dipole for different SAMs. This suggests that the monolayers have additional functions. Overall device performance is enhanced by more than a factor of two using a SAM with permanent dipole pointing towards the TiO2 surface or pointing towards polymer when compared to a control device with no interface modifiers. This study concludes that the SAM layer has two functions that are to shift the position of the conduction band of the porous TiO2 relative to the polymer HOMO level so as to influence interfacial charge separation and to act as a barrier layer, insulating back electron transfer from the TiO2 to the polymer. Both effects can benefit the performance of hybrid polymer metal oxide solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S.H. Liao, H.J. Jhuo, P.N. Yeh, Y.S. Cheng, Y.L. Li, Y.H. Lee, S. Sharma, S.A. Chen, Sci. Rep. 4(6813), 1–7 (2014)

    Google Scholar 

  2. T. Xu, Q. Qiao, Energy Environ. Sci. 4(8), 2700–2720 (2011)

    Article  Google Scholar 

  3. C.C. Chueh, C.Z. Li, A.K.Y. Jen, Energy Environ. Sci. 8(4), 1160–1189 (2015)

    Article  Google Scholar 

  4. S. Chen, J.R. Manders, S.W. Tsang, F. So, J. Mater. Chem. 22(46), 24202–24212 (2012)

    Article  Google Scholar 

  5. P. Ravirajan, A.M. Peiró, M.K. Nazeeruddin, M. Graetzel, D.D.C. Bradley, J.R. Durrant, J. Nelson, J. Phys. Chem. B 110(15), 7635–7639 (2006)

    Article  Google Scholar 

  6. J. Krüger, U. Bach, M. Grätzel, Adv. Mater. 12(6), 447–451 (2000)

    Article  Google Scholar 

  7. C. Goh, S.R. Scully, M.D. McGehee, J. Appl. Phys. 101(11), 114503 (2007)

    Article  Google Scholar 

  8. S. Loheeswaran, K. Balashangar, J. Jevirshan, P. Ravirajan, J. Nanoelectron. Optoelectron. 8(6), 484–488 (2013)

    Article  Google Scholar 

  9. M. Thanihaichelvan, K. Sockiah, K. Balashangar, P. Ravirajan, J. Mater. Sci.: Mater. Electron. 26(6), 3558–3563 (2015)

    Google Scholar 

  10. S. Khodabakhsh, B. Sanderson, J. Nelson, T.S. Jones, Adv. Funct. Mater. 16(1), 95–100 (2006)

    Article  Google Scholar 

  11. J.S. Kim, J.H. Park, J.H. Lee, J. Jo, D.Y. Kim, K. Cho, Appl. Phys. Lett. 91, 112111 (2007)

    Article  Google Scholar 

  12. B. Delgertsetseg, N. Javkhlantugs, E. Enkhtur, Y. Yokokura, T. Ooba, K. Ueda, C. Ganzorig, M. Sakomura, Org. Electron. 23, 164–170 (2015)

    Article  Google Scholar 

  13. A. Khassanov, H.G. Steinrück, T. Schmaltz, A. Magerl, M. Halik, Acc. Chem. Res. 48(7), 1901–1908 (2015)

    Article  Google Scholar 

  14. S. Khodabakhsh, D. Poplavskyy, S. Heutz, J. Nelson, D.D.C. Bradley, H. Murata, Adv. Funct. Mater. 14(12), 1205–1210 (2004)

    Article  Google Scholar 

  15. D. Cahen, A. Kahn, Adv. Mater. 15(4), 271–277 (2003)

    Article  Google Scholar 

  16. A. Abrusci, S.D. Stranks, P. Docampo, H.L. Yip, A.K.Y. Jen, H.J. Snaith, Nano Lett. 13(7), 3124–3128 (2013)

    Article  Google Scholar 

  17. S.K. Hau, Y.J. Cheng, H.L. Yip, Y. Zhang, H. Ma, A.K.Y. Jen, ACS Appl. Mater. Interfaces 2(7), 1892–1902 (2010)

    Article  Google Scholar 

  18. M. Carrara, F. Nüesch, L. Zuppiroli, Synth. Met. 121(1–3), 1633–1634 (2001)

    Article  Google Scholar 

  19. G.R.R.A. Kumara, K. Tennakone, V.P.S. Perera, A. Konno, S. Kaneko, M. Okuya, J. Phys. D Appl. Phys. 34(6), 868–873 (2001)

    Article  Google Scholar 

  20. J.N. Clifford, E. Palomares, M.K. Nazeeruddin, M. Gratzel, J. Nelson, X. Li, N.J. Long, J.R. Durrant, J. Am. Chem. Soc. 126(16), 5225–5233 (2004)

    Article  Google Scholar 

  21. E. Palomares, C.N. Clifford, A. Haque, T. Lutz, J.R. Durrant, Chem. Commun. 14, 1464–1465 (2002)

    Article  Google Scholar 

  22. C. Goh, S.R. Scully, M.D. McGehee, J. Appl. Phys. Lett. 101, 114503–114515 (2007)

    Google Scholar 

  23. T. Ishwara, D.D.C. Bradley, J. Nelson, P. Ravirajan, I. Vanseveren, T. Cleij, D. Vanderzande, L. Lutsen, S. Tierney, M. Heeney, I. McCulloch, Appl. Phys. Lett. 92(5), 053308 (2008)

    Article  Google Scholar 

  24. M.D. McGehee, MRS Bull. 34(2), 95–100 (2009)

    Article  Google Scholar 

  25. Y. Kim, A.M. Ballantyne, J. Nelson, D.D.C. Bradley, Org. Electron. 10(1), 205–209 (2009)

    Article  Google Scholar 

  26. M. Shalom, S. Rühle, I. Hod, S. Yahav, A. Zaban, J. Am. Chem. Soc. 131(29), 9876–9877 (2009)

    Article  Google Scholar 

  27. P. Wang, S.M. Zakeeruddin, J.E. Moser, M.K. Nazeeruddin, T. Sekiguchi, M. Gratzel, Nat. Mater. 2, 402–407 (2003)

    Article  Google Scholar 

  28. A.M. Peiro, P. Ravirajan, K. Govender, D.S. Boyle, P. O’Brien, D.D.C. Bradley, J. Nelson, J.R. Durrant, J. Mater. Chem. 16(21), 2088–2096 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ravirajan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loheeswaran, S., Thanihaichelvan, M., Ravirajan, P. et al. Controlling recombination kinetics of hybrid poly-3-hexylthiophene (P3HT)/titanium dioxide solar cells by self-assembled monolayers. J Mater Sci: Mater Electron 28, 4732–4737 (2017). https://doi.org/10.1007/s10854-016-6116-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6116-7

Keywords

Navigation