Skip to main content
Log in

The effect of the functionalization of multiple carrier transporting interlayers on the performance and stability of bulk heterojunction organic solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, we describe how the functionalization of carrier transporting interlayers affects the performance and stability of poly(3-hexylthiophene): poly(3-hexylthiophene): 3′H-cyclopropa [8,25] [5,6] fullerene-C60-D5h(6)-3′-butanoic acid 3′-phenyl methyl ester (P3HT:PCBM)-based organic solar cells. Composites of graphene oxide (GO) with zinc oxide (ZnO), (GO+ZnO) and with poly(3,4-ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT:PSS) (GO+PEDOT:PSS) were produced by grafting the ZnO and PEDOT:PSS onto GO sheets using a molecular level functionalization approach. This molecular level attachment was confirmed based on X-ray diffraction patterns, an X-ray photoelectron spectroscopic analysis, and Raman spectroscopy. The functionalization interlayer helped to attach the PEDOT:PSS and ZnO firmly to the GO layer, thereby forming an air-resistant layer and also supporting the backflow of free carrier transfer from the photoactive layer to their respective electrodes. Consequently, the device fabricated with the ZnO+GO composite as an electron transport layer and the GO+PEDOT:PSS composite as a hole transport layer demonstrated a significant improvement in PCE (4.88%), reproducibility, and environmental stability (40% after 432 h). Thus, we confirmed that these air-resistant and fast carriers transporting composite layers will probably contribute significantly to the widespread commercialization of low-cost and easily fabricated organic solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Li, G. Xu, C. Cui, Y. Li, Flexible and semitransparent organic solar cells. Adv. Energy Mater. 8, 1701791 (2018)

    Article  Google Scholar 

  2. A. Facchetti, π-Conjugated polymers for organic electronics and photovoltaic cell applications. Chem. Mater. 23, 733–758 (2010)

    Article  Google Scholar 

  3. G. Zhang, K. Zhang, Q. Yin, X.-F. Jiang, Z. Wang, J. Xin, W. Ma, H. Yan, F. Huang, Y. Cao, High-performance ternary organic solar cell enabled by a thick active layer containing a liquid crystalline small molecule donor. J. Am. Chem. Soc. 139, 2387–2395 (2017)

    Article  Google Scholar 

  4. X. Ouyang, R. Peng, L. Ai, X. Zhang, Z. Ge, Efficient polymer solar cells employing a non-conjugated small-molecule electrolyte. Nat. Photonics 9, 520 (2015)

    Article  Google Scholar 

  5. S.M. Arnab, M. Kabir, An analytical model for analyzing the current-voltage characteristics of bulk heterojunction organic solar cells. J. Appl. Phys. 115, 034504 (2014)

    Article  Google Scholar 

  6. Z. He, C. Zhong, X. Huang, W.Y. Wong, H. Wu, L. Chen, S. Su, Y. Cao, Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells. Adv. Mater. 23, 4636–4643 (2011)

    Article  Google Scholar 

  7. T.D. Nielsen, C. Cruickshank, S. Foged, J. Thorsen, F.C. Krebs, Business, market and intellectual property analysis of polymer solar cells. Sol. Energy Mater. Sol. Cells 94, 1553–1571 (2010)

    Article  Google Scholar 

  8. J. Peet, J.Y. Kim, N.E. Coates, W.L. Ma, D. Moses, A.J. Heeger, G.C. Bazan, Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat. Mater. 6, 497 (2007)

    Article  Google Scholar 

  9. J.-H. Tsai, C.-C. Chueh, M.-H. Lai, C.-F. Wang, W.-C. Chen, B.-T. Ko, C. Ting, Synthesis of new indolocarbazole-acceptor alternating conjugated copolymers and their applications to thin film transistors and photovoltaic cells. Macromolecules 42, 1897–1905 (2009)

    Article  Google Scholar 

  10. A. Perthué, I.F. Domínguez, P. Verstappen, W. Maes, O.J. Dautel, G. Wantz, A. Rivaton, An efficient and simple tool for assessing singlet oxygen involvement in the photo-oxidation of conjugated materials. Sol. Energy Mater. Sol. Cells 176, 336–339 (2018)

    Article  Google Scholar 

  11. R.S. Bhatta, M. Tsige, Chain length and torsional dependence of exciton binding energies in P3HT and PTB7 conjugated polymers: a first-principles study. Polymer 55, 2667–2672 (2014)

    Article  Google Scholar 

  12. Z. Zhao, Q. Wu, F. Xia, X. Chen, Y. Liu, W. Zhang, J. Zhu, S. Dai, S. Yang, Improving the conductivity of PEDOT: PSS hole transport layer in polymer solar cells via copper (II) bromide salt doping. ACS Appl. Mater. Interfaces 7, 1439–1448 (2015)

    Article  Google Scholar 

  13. R. Po, C. Carbonera, A. Bernardi, N. Camaioni, The role of buffer layers in polymer solar cells. Energy Environ. Sci. 4, 285–310 (2011)

    Article  Google Scholar 

  14. M. Jørgensen, K. Norrman, F.C. Krebs, Stability/degradation of polymer solar cells. Sol. Energy Mater. Sol. Cells 92, 686–714 (2008)

    Article  Google Scholar 

  15. V. Shrotriya, G. Li, Y. Yao, C.-W. Chu, Y. Yang, Transition metal oxides as the buffer layer for polymer photovoltaic cells. Appl. Phys. Lett. 88, 073508 (2006)

    Article  Google Scholar 

  16. M.D. Irwin, D.B. Buchholz, A.W. Hains, R.P. Chang, T.J. Marks, p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proc. Natl. Acad. Sci. 105, 2783–2787 (2008)

    Article  Google Scholar 

  17. T. Gallasch, T. Stockhoff, D. Baither, G. Schmitz, Ion beam sputter deposition of V2O5 thin films. J. Power Sources 196, 428–435 (2011)

    Article  Google Scholar 

  18. A. Kumar, P. Singh, N. Kulkarni, D. Kaur, Structural and optical studies of nanocrystalline V2O5 thin films. Thin Solid Films 516, 912–918 (2008)

    Article  Google Scholar 

  19. L. Meng, M. Andritschky, M. Dos, Santos, The effect of substrate temperature on the properties of dc reactive magnetron sputtered titanium oxide films. Thin Solid Films 223, 242–247 (1993)

    Article  Google Scholar 

  20. J. Cheng, F. Xie, Y. Liu, E. Wei, X. Li, Y. Yang, W.C. Choy, Efficient hole transport layers with widely tunable work function for deep HOMO level organic solar cells. J. Mater. Chem. A 3, 23955–23963 (2015)

    Article  Google Scholar 

  21. S.-S. Li, K.-H. Tu, C.-C. Lin, C.-W. Chen, M. Chhowalla, Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. ACS Nano 4, 3169–3174 (2010)

    Article  Google Scholar 

  22. Y.-J. Jeon, J.-M. Yun, D.-Y. Kim, S.-I. Na, S.-S. Kim, Moderately reduced graphene oxide as hole transport layer in polymer solar cells via thermal assisted spray process. Appl. Surf. Sci. 296, 140–146 (2014)

    Article  Google Scholar 

  23. D. Yu, E. Nagelli, R. Naik, L. Dai, Asymmetrically functionalized graphene for photodependent diode rectifying behavior. Angew. Chem. Int. Ed. 50, 6575–6578 (2011)

    Article  Google Scholar 

  24. D. Yu, Y. Yang, M. Durstock, J.-B. Baek, L. Dai, Soluble P3HT-grafted graphene for efficient bilayer—heterojunction photovoltaic devices. ACS Nano 4, 5633–5640 (2010)

    Article  Google Scholar 

  25. J.-S. Yeo, R. Kang, S. Lee, Y.-J. Jeon, N. Myoung, C.-L. Lee, D.-Y. Kim, J.-M. Yun, Y.-H. Seo, S.-S. Kim, Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer. Nano Energy 12, 96–104 (2015)

    Article  Google Scholar 

  26. E. Singh, H.S. Nalwa, Stability of graphene-based heterojunction solar cells. RSC Adv. 5, 73575–73600 (2015)

    Article  Google Scholar 

  27. G. Kakavelakis, D. Konios, E. Stratakis, E. Kymakis, Enhancement of the efficiency and stability of organic photovoltaic devices via the addition of a lithium-neutralized graphene oxide electron-transporting layer. Chem. Mater. 26, 5988–5993 (2014)

    Article  Google Scholar 

  28. A.M. Diez Pascual, J.A. Luceño Sánchez, R. Peña, P. Capilla, G. Diaz, Recent developments in graphene/polymer nanocomposites for application in polymer solar cells. Polymers 10, 217 (2018)

    Article  Google Scholar 

  29. B. Aissa, M. Nedil, J. Kroeger, A. Ali, R.J. Isaifan, R. Essehli, K. Mahmoud, Graphene nanoplatelets doping of P3HT: PCBM photoactive layer of bulk heterojunction organic solar cells for enhancing performance. Nanotechnology (2018)

  30. D. Li, J. Cui, H. Li, D. Huang, M. Wang, Y. Shen, Graphene oxide modified hole transport layer for CH3NH3PbI3 planar heterojunction solar cells. Sol. Energy 131, 176–182 (2016)

    Article  Google Scholar 

  31. W.J. da Silva, A.R.B.M. Yusoff, J. Jang, GO: PEDOT: PSS for High-Performance Green Phosphorescent Organic Light-Emitting Diode., IEEE Electron Device Lett., 34 1566–1568 (2013)

    Article  Google Scholar 

  32. A. Kanwat, J. Jang, Enhanced organic photovoltaic properties via structural modifications in PEDOT: PSS due to graphene oxide doping. Mater. Res. Bull. 74, 346–352 (2016)

    Article  Google Scholar 

  33. L.S. Pingree, B.A. MacLeod, D.S. Ginger, The changing face of PEDOT: PSS films: substrate, bias, and processing effects on vertical charge transport. J. Phys. Chem. C 112, 7922–7927 (2008)

    Article  Google Scholar 

  34. S. Wang, D. Yu, L. Dai, D.W. Chang, J.-B. Baek, Polyelectrolyte-functionalized graphene as metal-free electrocatalysts for oxygen reduction. ACS Nano 5, 6202–6209 (2011)

    Article  Google Scholar 

  35. D.-Y. Lee, S.-I. Na, S.-S. Kim, Graphene oxide/PEDOT: PSS composite hole transport layer for efficient and stable planar heterojunction perovskite solar cells. Nanoscale 8, 1513–1522 (2016)

    Article  Google Scholar 

  36. S. Rafique, S.M. Abdullah, M.M. Shahid, M.O. Ansari, K. Sulaiman, Significantly improved photovoltaic performance in polymer bulk heterojunction solar cells with graphene oxide/PEDOT: PSS double decked hole transport layer. Sci. Rep. 7, 39555 (2017)

    Article  Google Scholar 

  37. L. Chen, D. Du, K. Sun, J. Hou, J. Ouyang, Improved efficiency and stability of polymer solar cells utilizing two-dimensional reduced graphene oxide: graphene oxide nanocomposites as hole-collection material. ACS Appl. Mater. Interfaces 6, 22334–22342 (2014)

    Article  Google Scholar 

  38. M. Hilal, J.I. Han, Significant improvement in the photovoltaic stability of bulk heterojunction organic solar cells by the molecular level interaction of graphene oxide with a PEDOT: PSS composite hole transport layer. Sol. Energy 167, 24–34 (2018)

    Article  Google Scholar 

  39. I.P. Murray, S.J. Lou, L.J. Cote, S. Loser, C.J. Kadleck, T. Xu, J.M. Szarko, B.S. Rolczynski, J.E. Johns, J. Huang, Graphene oxide interlayers for robust, high-efficiency organic photovoltaics. J. Phys. Chem. Lett. 2, 3006–3012 (2011)

    Article  Google Scholar 

  40. Z. Yin, J. Wei, Q. Zheng, Interfacial materials for organic solar cells: recent advances and perspectives. Adv. Sci. (2016). https://doi.org/10.1002/advs.201500362

    Google Scholar 

  41. J. Gilot, I. Barbu, M.M. Wienk, R.A. Janssen, The use of ZnO as optical spacer in polymer solar cells: theoretical and experimental study. Appl. Phys. Lett. 91, 113520 (2007)

    Article  Google Scholar 

  42. A. Roy, S.H. Park, S. Cowan, M.H. Tong, S. Cho, K. Lee, A.J. Heeger, Titanium suboxide as an optical spacer in polymer solar cells. Appl. Phys. Lett. 95, 179 (2009)

    Google Scholar 

  43. Z. He, C. Zhong, S. Su, M. Xu, H. Wu, Y. Cao, Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat. Photonics 6, 591 (2012)

    Article  Google Scholar 

  44. R. Steim, S.A. Choulis, P. Schilinsky, C.J. Brabec, Interface modification for highly efficient organic photovoltaics. Appl. Phys. Lett. 92, 72 (2008)

    Article  Google Scholar 

  45. Y. Sun, J.H. Seo, C.J. Takacs, J. Seifter, A.J. Heeger, Inverted polymer solar cells integrated with a low-temperature-annealed sol-gel-derived ZnO film as an electron transport layer. Adv. Mater. 23, 1679–1683 (2011)

    Article  Google Scholar 

  46. F. Wang, Z.a.. Tan, Y. Li, Solution-processable metal oxides/chelates as electrode buffer layers for efficient and stable polymer solar cells. Energy Environ. Sci. 8, 1059–1091 (2015)

    Article  Google Scholar 

  47. Z. Yin, Q. Zheng, S.-C. Chen, D. Cai, Interface control of semiconducting metal oxide layers for efficient and stable inverted polymer solar cells with open-circuit voltages over 1.0 volt. ACS Appl. Mater. Interfaces 5, 9015–9025 (2013)

    Article  Google Scholar 

  48. J.-H. Huang, H.-Y. Wei, K.-C. Huang, C.-L. Chen, R.-R. Wang, F.-C. Chen, K.-C. Ho, C.-W. Chu, Using a low temperature crystallization process to prepare anatase TiO 2 buffer layers for air-stable inverted polymer solar cells. Energy Environ. Sci. 3, 654–658 (2010)

    Article  Google Scholar 

  49. A.K.K. Kyaw, D.H. Wang, V. Gupta, J. Zhang, S. Chand, G.C. Bazan, A.J. Heeger, Efficient solution-processed small-molecule solar cells with inverted structure. Adv. Mater. 25, 2397–2402 (2013)

    Article  Google Scholar 

  50. C.Y. Jiang, X.W. Sun, D.W. Zhao, A.K.K. Kyaw, Y.N. Li, Low work function metal modified ITO as cathode for inverted polymer solar cells. Sol. Energy Mater. Sol. Cells 94, 1618–1621 (2010)

    Article  Google Scholar 

  51. E. Singh, H.S. Nalwa, Graphene-based bulk-heterojunction solar cells: a review. J. Nanosci. Nanotechnol. 15, 6237–6278 (2015)

    Article  Google Scholar 

  52. M. Dutta, S. Sarkar, T. Ghosh, D. Basak, ZnO/graphene quantum dot solid-state solar cell. J. Phys. Chem. C 116, 20127–20131 (2012)

    Article  Google Scholar 

  53. M.J. Beliatis, K.K. Gandhi, L.J. Rozanski, R. Rhodes, L. McCafferty, M.R. Alenezi, A.S. Alshammari, C.A. Mills, K. Jayawardena, S.J. Henley, Hybrid graphene-metal oxide solution processed electron transport layers for large area high-performance organic photovoltaics. Adv. Mater. 26, 2078–2083 (2014)

    Article  Google Scholar 

  54. D. Zheng, W. Huang, P. Fan, Y. Zheng, J. Huang, J. Yu, Preparation of reduced graphene oxide: ZnO hybrid cathode interlayer using in situ thermal reduction/annealing for interconnecting nanostructure and its effect on organic solar cell. ACS Appl. Mater. Interfaces 9, 4898–4907 (2017)

    Article  Google Scholar 

  55. M.I. Ahmed, Z. Hussain, M. Mujahid, A.N. Khan, S.S. Javaid, A. Habib, Low resistivity ZnO-GO electron transport layer based CH3NH3PbI3 solar cells. AIP Adv. 6, 065303 (2016)

    Article  Google Scholar 

  56. T. Hu, L. Chen, K. Yuan, Y. Chen, Poly (N-vinylpyrrolidone)-decorated reduced graphene oxide with ZnO grown in situ as a cathode buffer layer for polymer solar cells. Chem. A 20, 17178–17184 (2014)

    Google Scholar 

  57. J. Xie, X. Yu, J. Huang, X. Sun, Y. Zhang, Z. Yang, M. Lei, L. Xu, Z. Tang, C. Cui, Self-organized fullerene interfacial layer for efficient and low-temperature processed planar perovskite solar cells with high UV-light stability. Adv. Sci. (2017). https://doi.org/10.1002/advs.201700018

    Google Scholar 

  58. W. Zhang, J. Xiong, L. Jiang, J. Wang, T. Mei, X. Wang, H. Gu, W.A. Daoud, J. Li, Thermal stability-enhanced and high-efficiency planar perovskite solar cells with interface passivation. ACS Appl. Mater. Interfaces 9, 38467–38476 (2017)

    Article  Google Scholar 

  59. G. Wang, T. Jiu, G. Tang, J. Li, P. Li, X. Song, F. Lu, J. Fang, Interface modification of ZnO-based inverted PTB7: PC71BM organic solar cells by cesium stearate and simultaneous enhancement of device parameters. ACS Sustain. Chem. Eng. 2, 1331–1337 (2014)

    Article  Google Scholar 

  60. M.M. Hossain, H. Shima, M.A. Islam, M. Hasan, M. Lee, Synergetic effect in raman scattering of ZnO nanoparticles in ZnO–CNT fibers: a way to enhance the G and 2D band. J. Phys. Chem. C 120, 17670–17682 (2016)

    Article  Google Scholar 

  61. T.H.T. Vu, T.T.T. Tran, H.N.T. Le, P.H.T. Nguyen, N.Q. Bui, N. Essayem, A new green approach for the reduction of graphene oxide nanosheets using caffeine. Bull. Mater. Sci. 38, 667–671 (2015)

    Article  Google Scholar 

  62. M. Hossain, H. Shima, M.A. Islam, M. Hasan, M. Lee, Simple synthesis process for ZnO sphere-decorated CNT fiber and its electrical, optical, thermal, and mechanical properties. RSC Adv. 6, 4683–4694 (2016)

    Article  Google Scholar 

  63. M.M. Hossain, M.A. Islam, H. Shima, M. Hasan, M. Lee, Alignment of carbon nanotubes in carbon nanotube fibers through nanoparticles: a route for controlling mechanical and electrical properties. ACS Appl. Mater. Interfaces 9, 5530–5542 (2017)

    Article  Google Scholar 

  64. S. Wang, D. Yu, L. Dai, Polyelectrolyte functionalized carbon nanotubes as efficient metal-free electrocatalysts for oxygen reduction. J. Am. Chem. Soc. 133, 5182–5185 (2011)

    Article  Google Scholar 

  65. T. Abdiryim, A. Ali, R. Jamal, Y. Osman, Y. Zhang, A facile solid-state heating method for preparation of poly (3, 4-ethelenedioxythiophene)/ZnO nanocomposite and photocatalytic activity. Nanoscale Res. Lett. 9, 89 (2014)

    Article  Google Scholar 

  66. S. Zhang, Z. Yu, P. Li, B. Li, F.H. Isikgor, D. Du, K. Sun, Y. Xia, J. Ouyang, Poly (3,4-ethylenedioxythiophene): polystyrene sulfonate films with low conductivity and low acidity through a treatment of their solutions with probe ultrasonication and their application as hole transport layer in polymer solar cells and perovskite solar cells. Org. Electron. 32, 149–156 (2016)

    Article  Google Scholar 

  67. T. Mongstad, A. Thøgersen, A. Subrahmanyam, S. Karazhanov, The electronic state of thin films of yttrium, yttrium hydrides and yttrium oxide. Sol. Energy Mater. Sol. Cells 128, 270–274 (2014)

    Article  Google Scholar 

  68. S.A. Spanninga, D.C. Martin, Z. Chen, X-ray photoelectron spectroscopy study of counterion incorporation in poly (3, 4-ethylenedioxythiophene)(PEDOT) 2: polyanion effect, toluenesulfonate, and small anions. J. Phys. Chem. C 114, 14992–14997 (2010)

    Article  Google Scholar 

  69. J. Wang, Z. Wang, B. Huang, Y. Ma, Y. Liu, X. Qin, X. Zhang, Y. Dai, Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS Appl. Mater. Interfaces 4, 4024–4030 (2012)

    Article  Google Scholar 

  70. N.M. Mackie, D.G. Castner, E.R. Fisher, Characterization of pulsed-plasma-polymerized aromatic films. Langmuir 14, 1227–1235 (1998)

    Article  Google Scholar 

  71. B.J. Schultz, R.V. Dennis, J.P. Aldinger, C. Jaye, X. Wang, D.A. Fischer, A.N. Cartwright, S. Banerjee, X-ray absorption spectroscopy studies of electronic structure recovery and nitrogen local structure upon thermal reduction of graphene oxide in an ammonia environment. Rsc Adv. 4, 634–644 (2014)

    Article  Google Scholar 

  72. A. Lisowska-Oleksiak, A. Nowak, M. Wilamowska, M. Sikora, W. Szczerba, C. Kapusta, Ex situ XANES, XPS and Raman studies of poly (3, 4-ethylenedioxythiophene) modified by iron hexacyanoferrate. Synth. Met. 160, 1234–1240 (2010)

    Article  Google Scholar 

  73. X. Wu, L. Lian, S. Yang, G. He, Highly conductive PEDOT: PSS and graphene oxide hybrid film from a dipping treatment with hydroiodic acid for organic light emitting diodes. J. Mater. Chem. C 4, 8528–8534 (2016)

    Article  Google Scholar 

  74. M. Hilal, J.I. Han, Study of interface chemistry between the carrier-transporting layers and their influences on the stability and performance of organic solar cells. Appl. Nanosci. (2018)

  75. G. Greczynski, T. Kugler, M. Keil, W. Osikowicz, M. Fahlman, W.R. Salaneck, Photoelectron spectroscopy of thin films of PEDOT–PSS conjugated polymer blend: a mini-review and some new results. J. Electron Spectrosc. Relat. Phenom. 121, 1–17 (2001)

    Article  Google Scholar 

  76. C. Teng, X. Lu, Y. Zhu, M. Wan, L. Jiang, Polymer in situ embedding for highly flexible, stretchable and water stable PEDOT: PSS composite conductors. Rsc Adv. 3, 7219–7223 (2013)

    Article  Google Scholar 

  77. L. Zhang, H. Peng, P.A. Kilmartin, C. Soeller, J. Travas-Sejdic, Poly (3, 4-ethylenedioxythiophene) and polyaniline bilayer nanostructures with high conductivity and electrocatalytic activity. Macromolecules 41, 7671–7678 (2008)

    Article  Google Scholar 

  78. S. Garreau, G. Louarn, J. Buisson, G. Froyer, S. Lefrant, In situ spectroelectrochemical Raman studies of poly (3, 4-ethylenedioxythiophene)(PEDT). Macromolecules 32, 6807–6812 (1999)

    Article  Google Scholar 

  79. Y. Li, X. Ni, S. Ding, High performance resistive switching memory organic films prepared through PPy growing on graphene oxide substrate. J. Mater. Sci.: Mater. Electron. 26, 9001–9009 (2015)

    Google Scholar 

  80. J. Ouyang, Q. Xu, C.-W. Chu, Y. Yang, G. Li, J. Shinar, On the mechanism of conductivity enhancement in poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) film through solvent treatment. Polymer 45, 8443–8450 (2004)

    Article  Google Scholar 

  81. A.C. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. Novoselov, S. Roth, Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006)

    Article  Google Scholar 

  82. Y.G. Kim, K.C. Kwon, Q. Van Le, K. Hong, H.W. Jang, S.Y. Kim, Atomically thin two-dimensional materials as hole extraction layers in organolead halide perovskite photovoltaic cells. J. Power Sources 319, 1–8 (2016)

    Article  Google Scholar 

  83. E. Stratakis, K. Savva, D. Konios, C. Petridis, E. Kymakis, Improving the efficiency of organic photovoltaics by tuning the work function of graphene oxide hole transporting layers. Nanoscale 6, 6925–6931 (2014)

    Article  Google Scholar 

  84. L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, J.R. Reynolds, Poly (3, 4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv. Mater. 12, 481–494 (2000)

    Article  Google Scholar 

  85. K.W. Wong, H. Yip, Y. Luo, K. Wong, W. Lau, K. Low, H. Chow, Z. Gao, W. Yeung, C. Chang, Blocking reactions between indium-tin oxide and poly (3, 4-ethylene dioxythiophene): poly (styrene sulphonate) with a self-assembly monolayer. Appl. Phys. Lett. 80, 2788–2790 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03030456).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong In Han.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4866 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hilal, M., Han, J.I. The effect of the functionalization of multiple carrier transporting interlayers on the performance and stability of bulk heterojunction organic solar cells. J Mater Sci: Mater Electron 29, 13561–13576 (2018). https://doi.org/10.1007/s10854-018-9484-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9484-3

Navigation