Skip to main content
Log in

Structural and Magnetic Properties of Mn1−x Zn x Fe2O4 Ferrite Nanoparticles

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

A Correction to this article was published on 17 February 2018

This article has been updated

Abstract

In this work, solid solutions of Mn1−x Zn x Fe2O4 (where x = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0) ferrite nanoparticles were synthesized using the novel combustion method. A powder X-ray diffraction study confirms the formation of spinel-structured Mn1−x Zn x Fe2O4. Unusual increases in the lattice constant were observed from 8.358 to 8.435 Å for Zn substitution. Raman spectra show the change in local environment of tetrahedral and octahedral symmetry. Field emission scanning electron microscopy images show that the prepared samples are nanosized and there is not much difference observed in surface morphology. A magnetic study reveals that the prepared samples exhibit superparamagnetic properties with negligible coercivity and the saturation magnetizations initially increase from 31.12 emu g−1 (x = 0) to 35.48 emu g−1 (x = 0.2) and then decrease for further Zn substitution at 300 K. The zero-field-cooled and field-cooled magnetization studies confirm the superparamagnetic nature of prepared samples, and the observed blocking temperature decreases from 146.05 to 32.3 K. At 20 K, the measured hysteresis loop shows the coercivity and it gradually decreases from 810 to 152 Oe. The obtained results suggest that the prepared superparamagnetic Mn1−x Zn x Fe2O4 ferrite nanoparticles are a promising candidate material for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 17 February 2018

    The original article requires minor corrections.

References

  1. Standley, K.J.: Oxide Magnetic Materials. Oxford University Press (1972)

  2. Dionne, G.F.: Magnetic Oxides. Springer (2009)

  3. Goldman, A.: Modern Ferrite Technology. Springer Science & Business Media (2006)

  4. Corot, C., Robert, P., Idée, J.-M., Port, M.: Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58, 1471–1504 (2006)

    Article  Google Scholar 

  5. Valenzuela, R.: Novel applications of ferrites. Physiother Res Int, 2012 (2012)

  6. Cullity, B.D., Graham, C.D.: Introduction to Magnetic Materials. Wiley (2011)

  7. Snoek, J.L.: New Developments in Ferromagnetic Materials. Elsevier Publishing Company (1949)

  8. Agrafiotis, C., Zaspalis, V.: Self-propagating high-temperature synthesis of MnZn-ferrites for inductor applications. J. Magn. Magn. Mater. 283, 364–374 (2004)

    Article  ADS  Google Scholar 

  9. Arshak, K., Ajina, A., Egan, D.: Development of screen-printed polymer thick film planner transformer using Mn–Zn ferrite as core material. Microelectron. J. 32, 113–116 (2001)

    Article  Google Scholar 

  10. Waqas, H., Qureshi, A.: Influence of pH on nanosized Mn–Zn ferrite synthesized by sol–gel auto combustion process. J. Therm. Anal. Calorim. 98, 355–360 (2009)

    Article  Google Scholar 

  11. Masuda, Y., Akiyama, T., Kitaoka, M., Otobe, S., Takei, H.: Development of new ferrite material for deflection yoke core. SID Symposium Digest of Technical Papers 29, 343–346 (1998)

    Article  Google Scholar 

  12. Keluskar, S., Tangsali, R., Naik, G., Budkuley, J.: High permeability of low loss Mn–Zn ferrite obtained by sintering nanoparticle Mn–Zn ferrite. J. Magn. Magn. Mater. 305, 296–303 (2006)

    Article  ADS  Google Scholar 

  13. Sugimoto, M.: The past, present, and future of ferrites. J. Am. Ceram. Soc. 82, 269–280 (1999)

    Article  Google Scholar 

  14. Zhang, Z., Xu, L., Liu, C.: Preparation and characterization of composite magnetic photocatalyst MnxZn1−xFe2O4/β- Bi2O3. RSC Advances. 5, 79997–80004 (2015)

    Article  Google Scholar 

  15. Kondo, T., Mori, K., Hachisu, M., Yamazaki, T., Okamoto, D., Watanabe, M., Gonda, K., Tada, H., Hamada, Y., Takano, M., Ohuchi, N., Ichiyanagi, Y.: Alternating current magnetic susceptibility and heat dissipation by Mn1−xZnxFe2O4 nanoparticles for hyperthermia treatment. J. Appl. Phys. 117, 17D157 (2015)

    Article  Google Scholar 

  16. Zhuang, L., Zhang, W., Zhao, Y., Li, D., Wu, W., Shen, H.: Temperature sensitive ferrofluid composed of Mn1−xZnxFe2O4 nanoparticles prepared by a modified hydrothermal process. Powder Technol. 217, 46–49 (2012)

    Article  Google Scholar 

  17. Ahmed, M.A., Okasha, N., El-Dek, S.I.: Preparation and characterization of nanometric Mn ferrite via different methods. Nanotechnology 19, 065603 (2008)

    Article  ADS  Google Scholar 

  18. Azadmanjiri, J.: Preparation of Mn–Zn ferrite nanoparticles from chemical sol–gel combustion method and the magnetic properties after sintering. J. Non-Cryst. Solids. 353, 4170–4173 (2007)

    Article  ADS  Google Scholar 

  19. Rath, C., Anand, S., Das, R., Sahu, K., Kulkarni, S., Date, S., Mishra, N.: Dependence on cation distribution of particle size, lattice parameter, and magnetic properties in nanosize Mn-Zn ferrite. J. Appl. Phys. 91, 2211 (2002)

    Article  ADS  Google Scholar 

  20. Pemartin, K., Solans, C., Alvarez-Quintana, J., Sanchez-Dominguez, M.: Synthesis of Mn–Zn ferrite nanoparticles by the oil-in-water microemulsion reaction method. Colloids Surf. A Physicochem. Eng. Asp. 451, 161–171 (2014)

    Article  Google Scholar 

  21. Seyyed Ebrahimi, S.A., Masoudpanah, S.M.: Effects of pH and citric acid content on the structure and magnetic properties of MnZn ferrite nanoparticles synthesized by a sol–gel autocombustion method. J. Magn. Magn. Mater. 357, 77–81 (2014)

    Article  ADS  Google Scholar 

  22. Shultz, M., Allsbrook, M., Carpenter, E.: Control of the cation occupancies of MnZn ferrite synthesized via reverse micelles. J. Appl. Phys. 101, 09M518 (2007)

    Article  Google Scholar 

  23. Arulmurugan, R., Jeyadevan, B., Vaidyanathan, G., Sendhilnathan, S.: Effect of zinc substitution on Co–Zn and Mn–Zn ferrite nanoparticles prepared by co-precipitation. J. Magn. Magn. Mater. 288, 470–477 (2005)

    Article  ADS  Google Scholar 

  24. Cullity, B.D., Stock, S.R.: Elements of X-ray Diffraction, 3rd edn. Prentice-Hall, New York (2001)

    Google Scholar 

  25. Aslibeiki, B.: Nanostructural, magnetic and electrical properties of Ag doped Mn-ferrite nanoparticles. Curr. Appl. Phys. 14, 1659–1664 (2014)

    Article  ADS  Google Scholar 

  26. Gul, I.H., Ahmed, W., Maqsood, A.: Electrical and magnetic characterization of nanocrystalline Ni–Zn ferrite synthesis by co-precipitation route. J. Magn. Magn. Mater. 320, 270–275 (2008)

    Article  ADS  Google Scholar 

  27. Syue, M.-R., Wei, F.-J., Chou, C.-S., Fu, C.-M.: Magnetic and electrical properties of Mn–Zn ferrites synthesized by combustion method without subsequent heat treatments. J. Appl. Phys. 109, 07A324 (2011)

    Article  Google Scholar 

  28. Tang, Z.X., Chen, J.P., Sorensen, C.M., Klabunde, K.J., Hadjipanayis, G.C., Tang, et al.: Reply. Phys. Rev. Lett. 68, 3114–3114 (1992)

    Article  ADS  Google Scholar 

  29. Gopalan, E.V., Al-Omari, I., Malini, K., Joy, P., Kumar, D.S., Yoshida, Y., Anantharaman, M.: Impact of zinc substitution on the structural and magnetic properties of chemically derived nanosized manganese zinc mixed ferrites. J. Magn. Magn. Mater. 321, 1092–1099 (2009)

    Article  ADS  Google Scholar 

  30. Shannon, R., Gumerman, P., Chenavas, J.: Effect of octahedral distortion on mean mn3+-o distances. Mineralogical Soc Amer 1130 17th St Nw Suite 330, 714–716 (1975). DC 20036

    Google Scholar 

  31. Shebanova, O.N., Lazor, P.: Raman spectroscopic study of magnetite (FeFe2O4): a new assignment for the vibrational spectrum. J. Solid State Chem. 174, 424–430 (2003)

    Article  ADS  Google Scholar 

  32. White, W.B., DeAngelis, B.A.: Interpretation of the vibrational spectra of spinels. Spectrochim. Acta A: Mol. Spectrosc. 23, 985–995 (1967)

    Article  ADS  Google Scholar 

  33. Diodati, S., Pandolfo, L., Caneschi, A., Gialanella, S., Gross, S.: Green and low temperature synthesis of nanocrystalline transition metal ferrites by simple wet chemistry routes. Nano Res. 7, 1027–1042 (2014)

    Article  Google Scholar 

  34. Xu, Y., Sherwood, J., Qin, Y., Holler, R.A., Bao, Y.: A general approach to the synthesis and detailed characterization of magnetic ferrite nanocubes. Nanoscale 7, 12641–12649 (2015)

    Article  ADS  Google Scholar 

  35. Sekulić, D., Lazarević, Z., Jovalekić, Č., Rečnik, A., Romčević, M., Hadžić, B., Romčević, N.: The comparative study of the structural and the electrical properties of the nano spinel ferrites prepared by the soft mehanochemical synthesis. Sci. Sinter. 46, 235–245 (2014)

    Article  Google Scholar 

  36. Tang, Z.X., Sorensen, C.M., Klabunde, K.J., Hadjipanayis, G.C.: Size-dependent Curie temperature in nanoscale MnFe2O4 particles. Phys. Rev. Lett. 67, 3602–3605 (1991)

    Article  ADS  Google Scholar 

  37. Zheng, M., Wu, X.C., Zou, B.S., Wang, Y.J.: Magnetic properties of nanosized MnFe2O4 particles. J. Magn. Magn. Mater. 183, 152–156 (1998)

    Article  ADS  Google Scholar 

  38. Chen, J., Sorensen, C., Klabunde, K., Hadjipanayis, G., Devlin, E., Kostikas, A.: Size-dependent magnetic properties of MnFe2O4 fine particles synthesized by coprecipitation. Phys. Rev. B 54, 9288 (1996)

    Article  ADS  Google Scholar 

  39. Kodama, R.H., Berkowitz, A.E., McNiff, J.E.J., Foner, S.: Surface spin disorder in NiFe2O4 nanoparticles. Phys. Rev. Lett. 77, 394–397 (1996)

    Article  ADS  Google Scholar 

  40. Neel, L.: Magnetic properties of ferrites: ferrimagnetism and antiferromagnetism. Ann. Phys. 3, 137–198 (1948)

    Article  Google Scholar 

  41. Néel, L.: Antiferromagnetism and ferrimagnetism. Proc. Phys. Soc. London, Sect. A 65, 869 (1952)

    Article  ADS  MATH  Google Scholar 

  42. Smith, J., Wijin, H.P.J.: Ferrites. Wiley, New York (1959)

    Google Scholar 

  43. Lu, A.-H., Salabas, E.L., Schüth, F.: Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 46, 1222–1244 (2007)

    Article  Google Scholar 

  44. Liu, C., Zou, B., Rondinone, A.J., Zhang, Z.J.: Reverse micelle synthesis and characterization of superparamagnetic MnFe2O4 spinel ferrite nanocrystallites. J. Phys. Chem. B 104, 1141–1145 (2000)

    Article  Google Scholar 

  45. Ali, M.B., El Maalam, K., El Moussaoui, H., Mounkachi, O., Hamedoun, M., Masrour, R., Hlil, E., Benyoussef, A.: Effect of zinc concentration on the structural and magnetic properties of mixed Co–Zn ferrites nanoparticles synthesized by sol/gel method. J. Magn. Magn. Mater. 398, 20–25 (2016)

    Article  ADS  Google Scholar 

  46. Murugesan, C., Chandrasekaran, G.: Impact of gd3+ substitution on the structural, magnetic and electrical properties of cobalt ferrite nanoparticles. RSC Adv. 5, 73714–73725 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Central Instrumentation Facility, Pondicherry University, and DST-FIST, Government of India, for funding the facilities utilized in the present work and the Center for Nano Science and Technology for providing XRD measurement. C.M. thanks UGC, New Delhi, India, for the financial assistance in the form of the Rajiv Gandhi National Fellowship (RGNF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Murugesan.

Additional information

A correction to this article is available online at https://doi.org/10.1007/s10948-018-4607-x.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murugesan, C., Chandrasekaran, G. Structural and Magnetic Properties of Mn1−x Zn x Fe2O4 Ferrite Nanoparticles. J Supercond Nov Magn 29, 2887–2897 (2016). https://doi.org/10.1007/s10948-016-3604-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3604-1

Keywords

Navigation