Skip to main content
Log in

Processing of crack-free high density polycrystalline LiTaO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work has successfully achieved high density (99.9%) polycrystalline LiTaO3. The keys to the high density without cracking were the use of LiF-assisted densification to maintain fine grain size as well as the presence of secondary lithium aluminate phases as grain growth inhibitors. The average grain size of the hot pressed polycrystalline LiTaO3 is less than 5 μm, limiting residual stresses caused by the anisotropic thermal expansion. Dilatometry results clearly indicate liquid phase sintering via the added LiF sintering aid. Efficient liquid phase sintering allows densification during low temperature hot pressing. Electron microscopy confirmed the high-density microstructure. Rietveld analysis of neutron diffraction data revealed the presence of LiAlO2 and LiAl5O8 minority phases and negligible substitutional defect incorporation in LiTaO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.M. Glass, Dielectric, thermal, and pyroelectric properties of ferroelectric LiTaO3. Phys. Rev. 172(2), 564–571 (1968)

    Article  Google Scholar 

  2. V. Gopalan, K. L. Schepler, V. Dielorf, I. Biaggio, in The Handbook of Photonics, ed. by M.C. Gupta, J. Ballato. Chapter 6: Ferroelectric Materials, 2nd edn (CRC Press, 2006), pp. 1–53

  3. C.B. Roundy, R.L. Byer, Sensitive LiTaO3 pyroelectric detector. J. Appl. Phys. 44, 929–931 (1973)

    Article  Google Scholar 

  4. Y. Cho, K. Fujimoto, Y. Hiranaga, Y. Wagatsuma, A. Onoe, K. Terabe, K. Kitamura, Tbit/inch2 ferroelectric data storage based on scanning nonlinear dielectric microscopy. Appl. Phys. Lett. 81(23), 4401–4403 (2002)

    Article  Google Scholar 

  5. V. Gopalan, V. Dierolf, D.A. Scrymgeour, Defect-domain wall interactions in trigonal ferroelectrics. Annu. Rev. Mater. Res. 2007(37), 449–489 (2007)

    Article  Google Scholar 

  6. L. Tian, V. Gopalan, L. Galambos, Domain reversal in stoichiometric LiTaO3 prepared by vapor transport equilibration. Appl. Phys. Lett. 85(19), 4445–4447 (2004)

    Article  Google Scholar 

  7. P.T. Brown, G.W. Ross, R.W. Eason, A.R. Pogosyan, Control of domain structures in lithium tantalate using interferometric optical patterning. Opt. Commun. 163, 310–316 (1999)

    Article  Google Scholar 

  8. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics. Nature 432(4), 84–87 (2004)

    Article  Google Scholar 

  9. J. Rödel, W. Jo, K.T.P. Seifert, E.-M. Anton, T. Granzow, D. Damjanovic, Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92(6), 1153–1177 (2009)

    Article  Google Scholar 

  10. S.O. Leontsev, R.E. Eitel, Progress in engineering high strain lead-free piezoelectric ceramics. Sci. Technol. Adv. Mater. 11, 044302 (2010)

    Article  Google Scholar 

  11. M. Katz, R.K. Route, D.S. Hum, K.R. Parameswaran, G.D. Miller, M.M. Fejer, Vapor-transport equilibrated near-stoichiometric lithium tantalate for frequency-conversion applications. Opt. Lett. 29(15), 1775–1777 (2004)

    Article  Google Scholar 

  12. R.T. Smith, F.S. Welsh, Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate. J. Appl. Phys. 42(6), 2219–2230 (1971)

  13. A. Huanosta, A.R. West, The electrical properties of ferroelectric LiTaO3 and its solid solutions. J. Appl. Phys. 61, 5386 (1987)

    Article  Google Scholar 

  14. Z.G. Ye, R. Von Der Mühll, J. Ravez, in IEEE 7th International Symposium on Applications of Ferroelectrics. Sintering Mechanism of LiTaO3 Ceramics by the Addition of Lithium and Magnesium Fluorides (Champaign, IL, 1990), pp. 566–569

  15. S. Shimada, K. Kodaira, T. Matsushita, Sintering LiTaO3 and KTaO3 with the aid of manganese oxide. J. Mater. Sci. 19, 1385–1390 (1984)

    Article  Google Scholar 

  16. Y. Torii, T. Sekiya, T. Yamamoto, K. Koyabashi, Y. Abe, Preparation and properties of LiTaO3-based solid solutions with cation vacancies. Mat. Res. Bull. 18, 1569–1574 (1983)

    Article  Google Scholar 

  17. S. Kawakami, A. Tsuzuki, T. Sekiya, T. Ishikuro, M. Masuda, Y. Torii, Structural and dielectric properties in the system LiTaO3-WO3. Mater. Res. Bull. 20, 1435 (1985)

    Article  Google Scholar 

  18. A. Elouadi, M. Zriouil, J. Ravez, P. Hagenmuller, Some new non-stoichiometric phases appearing close to LiTaO3 in the ternary system Li2O-Ta2O5-(TiO2)2. Mat. Res. Bull. 16, 1099–1106 (1981)

    Article  Google Scholar 

  19. J.P. Bonnet, J. Ravez, G.T. Joo, P. Hagenmuller, Correlations between sintering conditions and microstructure in ceramics of composition Li0.80Mg0.20 (Ta0.80Ti0.20)O3. J. Mater. Res. 3(2), 387–391 (1988)

    Article  Google Scholar 

  20. B.S. Chiou, Y.T. Lin, J.G. Duh, Sintering behavior and dielectric characteristics of LiTaO3 with the addition of (Mg2 + TiO2). Mater. Chem. Phys. 28, 51 (1991)

    Article  Google Scholar 

  21. C.-F. Chen, A. Llobert, G.L. Brennecka, R.T. Forsyth, D.R. Guidry, P.A. Papin, R.J. McCabe, Powder synthesis and hot-pressing of a LiTaO3 ceramic. J. Am. Ceram. Soc. 95(9), 2820–2826 (2012)

    Article  Google Scholar 

  22. FIZ Karlsruhe ICSD collection code 9537, structure form LiTaO3

  23. FIZ Karlsruhe ICSD collection code 23815, structure form LiAlO2

  24. FIZ Karlsruhe ICSD collection code 10480, structure form LiAl5O8

  25. T. Yang, Y. Liu, L. Ahang, M. Hu, Q. Yang, Z. Huang, M. Fang, Powder synthesis and properties of LiTaO3 ceramics. Adv. Powder Technol. 25(3), 933–936 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Robert Reinovsky, program manager of LANL ADX Office C3 Science Campaign, for the funding support. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Fong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, CF., Brennecka, G.L., King, G. et al. Processing of crack-free high density polycrystalline LiTaO3 ceramics. J Mater Sci: Mater Electron 28, 3725–3732 (2017). https://doi.org/10.1007/s10854-016-5980-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5980-5

Keywords

Navigation