Skip to main content
Log in

Synthesis and morphological control of rare earth oxide nanoparticles by solvothermal reaction

  • Novel Routes of Advanced Materials Processing and Applications
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Eu doped Y2O3 and some kinds of other rare earth oxides nanoparticles such as Er2O3, Nd2O3, Ho2O3, Lu2O3, and Dy2O3 were prepared by a simple co-precipitation-solvothermal treatment-calcination process, where the co-precipitated amorphous hydroxide precursors obtained by adding rare earth nitrate solutions in ammonia solutions were heated in solvents such as water, alcohols and glycols, followed by calcination in air. The morphology of rare earth oxide particles strongly depended on the solvothermal reaction medium but not related to the kind of rare earth oxide. The powders prepared in water and ethanol possessed nanowire structure, where the aspect ratio of powder treated in water was higher than that in ethanol. The powders prepared by co-precipition-solvothermal treatment-calcination process using ethylene glycol consisted of near-spherical nanoparticles whereas that prepared by conventional co-precipitation-calcination method consisted of hardly agglomerated submicron particles. The nanoparticles of Eu3+ doped Y2O3 prepared by co-precipition-solvothermal treatment-calcination process showed similar intensity of photoluminescence with the submicron particles by co-precipition-calcination process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ronda CR (1997) J Lumin 72–74:49

    Article  Google Scholar 

  2. Kang Y, Park S, Lenggoro I, Okuyama K (1999) J Mater Res 14:2611

    Article  CAS  Google Scholar 

  3. Kang Y, Roh H, Park S (2000) Adv Mater 12:451

    Article  CAS  Google Scholar 

  4. Sohn J, Kang Y, Park S (2002) Jpn J Appl Phys 14:3006

    Article  CAS  Google Scholar 

  5. Wang L, Zhou Y, Quan Z, Lin J (2005) Mater Lett 59:1130

    Article  CAS  Google Scholar 

  6. La R, Hu Z, Li H, Shang X, Yang Y (2004) Mater Sci Eng A 368:145

    Article  CAS  Google Scholar 

  7. Zhang J, Hong G (2004) J Solid State Chem 177:1292

    Article  CAS  Google Scholar 

  8. Hirai T, Asada Y, Komasawa I (2004) J Collid Interf Sci 276:339

    Article  CAS  Google Scholar 

  9. Lee M, Oh S, Yi S (2000) J Collid Interf Sci 226:65

    Article  CAS  Google Scholar 

  10. Vila L, Stucchi E, Davolos M (1997) J Mater Chem 7:2113

    Article  Google Scholar 

  11. Piegza J, Zych E, Hreniak D, Strek W, Kepinski L (2004) J Phys: Condens Mater 16:6983

    Article  CAS  Google Scholar 

  12. Yin S, Fujishiro Y, Sato T (1996) Br Ceram Trans 95:258

    CAS  Google Scholar 

  13. Yin S, Inoue Y, Uchida S, Fujishiro Y, Sato T (1998) J Mater Res 13:844

    Article  CAS  Google Scholar 

  14. Yin S, Sato T (2000) Ind Eng Chem Res 39:4526

    Article  CAS  Google Scholar 

  15. Wu J, Yin S, Lin Y, Lin J, Huang M, Sato T (2001) J Mater Sci 36:3055

    Article  CAS  Google Scholar 

  16. Yin S, Aita Y, Komatsu M, Wang J, Tang Q, Sato T (2005) J Mater Chem 15:674

    Article  CAS  Google Scholar 

  17. Yin S, Uchida S, Fujishiro Y, Aki M, Sato T (1999) J Mater Chem 9:1191

    Article  CAS  Google Scholar 

  18. Lide D, Frederikse H (eds) (1995–1996) CRC handbook of chemistry and physics, 76th edn. CRC Press, Inc., New York, p 3-3, 6-159, 6-245, 6-253

  19. Sato T, Inoue Y, Yin S, Fujishiro Y, Odashima T (1998) Ceram Trans 81:29

    CAS  Google Scholar 

  20. Silver J, Martinez-Rubio M, Ireland T, Fern G, Withnall R (2001) J Phys Chem B 105:9107

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was carried out as a one of the projects in MSTEC Research Center at IMRAM, Tohoku University and partially supported by the Ministry of Education, Culture, Sports, Science and Technology, a Grant-in-Aid for the Scientific Research of Priority Areas (Panoscopic Assembling and High Ordered Functions for Rare Earth Materials).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Yin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, S., Akita, S., Shinozaki, M. et al. Synthesis and morphological control of rare earth oxide nanoparticles by solvothermal reaction. J Mater Sci 43, 2234–2239 (2008). https://doi.org/10.1007/s10853-007-2070-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2070-3

Keywords

Navigation