Skip to main content
Log in

Microwave-assisted synthesis and characterization photoluminescence properties: a fast, efficient route to produce ZnO/GrO nanocrystalline

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanostructure materials have attracted much attention in the last few years due to their unique properties that are different from the bulk materials. ZnO/GrO nanoparticles were synthesized with a simple surfactant free microwave route. ZnO nanostructures as an important semiconductor with wide bandgap (3.6 eV) has been widely used for the light emitting diodes, The effects of different parameters such as type of zinc precursor, time and power of irradiation on the morphology and particle size of the samples have been investigated. In this paper we report a simple and rapid microwave method for preparation of ZnO/GrO nanoparticles. Nanostructures were synthesized from reaction between zinc acetate and graphene powder. The effects of different parameters such as power of oven and time of irradiation were also studied. Finally, the efficiency of ZnO/GrO nanostructures as a optical investigation using photoluminescence spectrum irradiation has been evaluated. ZnO/GrO nanostructures were characterized by means of X-ray diffraction, Atomic-force microscopy, scanning electron microscopy, Fourier transform infrared and photoluminescence spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. Xuea, W. Yina, P. Zhanga, J. Zhanga, P.T. Ji, S.T. Jia, Colloids Surf. A Physicochem. Eng. Asp. 427, 7 (2013)

    Article  Google Scholar 

  2. Y. Gao, I. Gereige, A.E. Labban, D. Cha, T.T. Isimjan, P.M. Beaujuge, Appl. Mater. Interfaces 6, 2219 (2014)

    Article  Google Scholar 

  3. H. Mertaniemi, V. Jokinen, L. Sainiemi, S. Franssila, A. Marmur, O. Ikkala, R.H.A. Ras, Adv. Mater. 23, 2911 (2011)

    Article  Google Scholar 

  4. C. Xuebo, C. Zhao, L. Xianmei, J. Phys. Chem. C 18, 111 (2007)

    Google Scholar 

  5. S.Y. Shao, J. Liu, B.H. Zhang, Z.Y. Xie, L.X. Wang, Appl. Phys. Lett. 98, 2304 (2011)

    Article  Google Scholar 

  6. Z. Zang, A. Nakamura, J. Temmyo, Opt. Express 21, 11448 (2013)

    Article  Google Scholar 

  7. Z. Zang, M. Wen, W. Chen, Y. Zeng, Z. Zu, X. Zeng, X. Tang, Mater. Des. 84, 418 (2015)

    Article  Google Scholar 

  8. Z. Zang, X. Tang, J. Alloys Compd. 619, 98 (2015)

    Article  Google Scholar 

  9. H.W. Zan, C.H. Li, C.C. Yeh, M.Z. Dai, H.F. Meng, Appl. Phys. Lett. 98, 253 (2011)

    Google Scholar 

  10. T. Pompe, V. Srikant, D.R. Clarke, Appl. Phys. Lett. 69, 405 (1996)

    Article  Google Scholar 

  11. S. Wang, Y. Zhang, N. Abidi, L. Cabrales, Langmuir 25, 11078 (2009)

    Article  Google Scholar 

  12. A. Mohadesi, M. Ranjbar, S.M. Hosseinpour-Mashkani, Superlattice Microst. 66, 48 (2014)

    Article  Google Scholar 

  13. H. Asadollahzadeh, M. Ranjbar, M.A. Taher, J Indus. Eng. Chem. 20, 4321 (2014)

    Article  Google Scholar 

  14. M. Ranjbar, M.A. Taher, S.M. Hosseinpour-Mashkani, J. Clust. Sci. 24, 959 (2013)

    Article  Google Scholar 

  15. Y.K. Lai, Y.X. Tang, J.J. Gong, D.G. Gong, L.F. Chi, C.J. Lin, Z. Chen, J. Mater. Chem. 22, 7420 (2012)

    Article  Google Scholar 

  16. S. Yang, R. Pelton, C. Abarca, Z. Dai, M. Montgomery, M. Xu, J.A. Bos, Int. J. Miner. Process 123, 137 (2013)

    Article  Google Scholar 

  17. S. Yang, R. Pelton, A. Raegen, M. Montgomery, K. Dalnoki-Veress, Langmuir 27, 10438 (2011)

    Article  Google Scholar 

  18. R. Biroju, P. Giri, S. Dhara, K. Imakita, M. Fuji, ACS Appl. Mater. Interfaces 6, 377 (2013)

    Article  Google Scholar 

  19. A. Janotti, V. Walle, J. Cryst. Growth 287, 58 (2006)

    Article  Google Scholar 

  20. Y. Hong, W. Lee, Y. Wu, T. Ruof, Nano Lett. 12, 1431 (2012)

    Article  Google Scholar 

  21. Y.J. Kim, A. Hadiyawarman, A. Yoon, M. Kim, G.C. Yi, C. Liu, Nanotechnology 22, 2456 (2011)

    Google Scholar 

  22. M. Trunk, V. Venkatachalapathy, A. Galeckas, AYu. Kuznetsov, Appl. Phys. Lett. 97, 2119 (2010)

    Article  Google Scholar 

  23. D. Siegel, L.G.J. Heeto, J.B. Adams, Phys. Rev. B Condens. Matter 65, 415 (2002)

    Article  Google Scholar 

  24. S.C. Hung, C.W. Chen, C.Y. Shieh, G.C. Chi, R. Fan, Appl. Phys. Lett. 98, 504 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Ranjbar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foroughi, M.M., Ranjbar, M. Microwave-assisted synthesis and characterization photoluminescence properties: a fast, efficient route to produce ZnO/GrO nanocrystalline. J Mater Sci: Mater Electron 28, 1359–1363 (2017). https://doi.org/10.1007/s10854-016-5668-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5668-x

Keywords

Navigation