Skip to main content
Log in

Structural and Spectral Characterization of ZnO Nanowires by Thermal Decomposition Method — a Comparative Study

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The present work is based on the comparative study of structural, spectral, and thermal characterization of zinc oxide nanowire (ZnO NW) synthesized through the thermal decomposition method, once microwave-assisted and once in ambient air. The structural morphology and crystalline nature were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The spectral characterization was studied by using optical absorption (UV–Vis) and photoluminescence (PL) at room temperature. Their optical absorption exhibits defect-induced fluorescence tunable behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.L. Costa-Krämer, N. García, P. García-Mochales, P.A. Serena, M.I. Marqués, A. Correia, Conductance quantization in nanowires formed between micro and macroscopic metallic electrodes. Phys. Rev. B 55, 5416 (1997). https://doi.org/10.1103/PhysRevB.55.5416

    Article  ADS  Google Scholar 

  2. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, One-Dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 15, 353–389 (2003). https://doi.org/10.1002/ADMA.200390087

    Article  Google Scholar 

  3. S.J. Pearton, C.R. Abernathy, M.E. Overberg, G.T. Thaler, D.P. Norton, N. Theodoropoulou, A.F. Hebard, Y.D. Park, F. Ren, J. Kim, L.A. Boatner, Wide band gap ferromagnetic semiconductors and oxides. J. Appl. Phys. 93, 1 (2002). https://doi.org/10.1063/1.1517164

    Article  ADS  Google Scholar 

  4. U. Diebold, The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53–229 (2003). https://doi.org/10.1016/S0167-5729(02)00100-0

    Article  ADS  Google Scholar 

  5. N.J. Nicholas, Control of ZnO crystal morphology through face specific adsorption (2011), http://minerva-access.unimelb.edu.au/handle/11343/37258. Accessed 26 Aug 2021

  6. Z. Wang, B. Zhang, T. Otsuka, K. Inoue, H. Kobayashi, M. Kurmoo, Anionic NaCl-type frameworks of [MnII(HCOO)3−], templated by alkylammonium, exhibit weak ferromagnetism. Dalt. Trans. 2209–2216 (2004). https://doi.org/10.1039/B404466E

  7. L. Schmidt-Mende, J.L. MacManus-driscoll, ZnO – nanostructures, defects, and devices. Mater. Today. 10, 40–48 (2007). https://doi.org/10.1016/S1369-7021(07)70078-0

    Article  Google Scholar 

  8. J. Cui, Zinc oxide nanowires. Mater. Charact. 64, 43–52 (2012). https://doi.org/10.1016/J.MATCHAR.2011.11.017

    Article  Google Scholar 

  9. Y. Yang, H. Chen, B. Zhao, X. Bao, Size control of ZnO nanoparticles via thermal decomposition of zinc acetate coated on organic additives. J. Cryst. Growth (2004). https://www.sciencedirect.com/science/article/pii/S0022024803022115. Accessed 26 Aug 2021

  10. C.C. Lin, Y.Y. Li, Synthesis of ZnO nanowires by thermal decomposition of zinc acetate dihydrate. Mater. Chem. Phys. 113, 334–337 (2009). https://doi.org/10.1016/J.MATCHEMPHYS.2008.07.070

    Article  Google Scholar 

  11. S.K. Mishra, S. Srivastava, R.K. Srivastava, A.C. Panday, S.G. Prakash, Photoluminescence and ultraviolet photoresponse in ZnO nanophorsphors prepared by thermal decomposition of zinc acetate. Adv. Mater. Lett. 2, 298–302 (2011). https://doi.org/10.5185/AMLETT.INDIAS.210

    Article  Google Scholar 

  12. Z. Wang, C. Lin, X. Liu, G. Li, Y. Luo, Z. Quan, H. Xiang, J. Lin, Tunable photoluminescent and cathodoluminescent properties of ZnO and ZnO: Zn phosphors. J. Phys. Chem. B 110, 9469–9476 (2006). https://doi.org/10.1021/JP057214T

    Article  Google Scholar 

  13. A. Van Dijken, E.A. Meulenkamp, D. Vanmaekelbergh, A. Meijerink, The luminescence of nanocrystalline ZnO particles: the mechanism of the ultraviolet and visible emission. J. Lumin. 87–89, 454–456 (2000). https://doi.org/10.1016/S0022-2313(99)00482-2

    Article  Google Scholar 

  14. H.S. Kang, J.S. Kang, J.W. Kim, S.Y. Lee, Annealing effect on the property of ultraviolet and green emissions of ZnO thin films. J. Appl. Phys. 95, 1246 (2004). https://doi.org/10.1063/1.1633343

    Article  ADS  Google Scholar 

  15. Q. Zhu, C. Xie, H. Li, C. Yang, S. Zhang, D. Zeng, Selectively enhanced UV and NIR photoluminescence from a degenerate ZnO nanorod array film. J. Mater. Chem. C 2, 4566–4580 (2014). https://doi.org/10.1039/C4TC00011K

    Article  Google Scholar 

  16. T. Yao, J.-C. Woo (Eds), Physics and applications of semiconductor quantum structures (1st ed.). CRC Press. (2001). https://doi.org/10.1201/9781420033717

  17. J. Husna, M. Mannir Aliyu, M. Aminul Islam, P. Chelvanathan, N. Radhwa Hamzah, M. Sharafat Hossain, M.R. Karim, N. Amin, Influence of annealing temperature on the properties of ZnO thin films grown by sputtering. Energy Procedia. 25, 55–61 (2012). https://doi.org/10.1016/j.egypro.2012.07.008

    Article  Google Scholar 

  18. M.Z. Toe, A. Matsuda, S.S. Han, K.A. Yaacob, S.Y. Pung, Effect of annealing temperature on the performance of zno thin film-based dye sensitized solar cell. AIP Conf. Proc. (2020). https://doi.org/10.1063/5.0015699

    Article  Google Scholar 

  19. S. Sanjeev, D. Kekuda, Effect of annealing temperature on the structural and optical properties of zinc oxide (ZnO) thin films prepared by spin coating process. IOP Conf. Ser. Mater. Sci. Eng. (2015). https://doi.org/10.1088/1757-899X/73/1/012149

    Article  Google Scholar 

  20. M.H. Kabir, M.M. Ali, M.A. Kaiyum, M.S. Rahman, Effect of annealing temperature on structural morphological and optical properties of spray pyrolized Al-doped ZnO thin films. J. Phys. Commun. (2019). https://doi.org/10.1088/2399-6528/ab496f

    Article  Google Scholar 

  21. H.S. Chin, L.S. Chao, The effect of thermal annealing processes on structural and photoluminescence of zinc oxide thin film. J. Nanomater. (2013). https://doi.org/10.1155/2013/424953

    Article  Google Scholar 

  22. J. Lv, W. Gong, K. Huang, J. Zhu, F. Meng, X. Song, Z. Sun, Effect of annealing temperature on photocatalytic activity of ZnO thin films prepared by sol-gel method. Superlattices Microstruct. 50, 98–106 (2011). https://doi.org/10.1016/j.spmi.2011.05.003

    Article  ADS  Google Scholar 

  23. R. Saravanan, E. Thirumal, V.K. Gupta, V. Narayanan, A. Stephen, The photocatalytic activity of ZnO prepared by simple thermal decomposition method at various temperatures. J. Mol. Liq. 177, 394–401 (2013). https://doi.org/10.1016/J.MOLLIQ.2012.10.018

    Article  Google Scholar 

  24. M. Sunaina, S. Sreekanth, S.K. Ghosh, A.K. Mehta, M. Ganguli, Jha, Investigation of the growth mechanism of the formation of ZnO nanorods by thermal decomposition of zinc acetate and their field emission properties. CrystEngComm 19, 2264–2270 (2017). https://doi.org/10.1039/C7CE00073A

    Article  Google Scholar 

  25. T. Arii, A. Kishi, The effect of humidity on thermal process of zinc acetate. Thermochim. Acta. 400, 175–185 (2003). https://doi.org/10.1016/S0040-6031(02)00487-2

    Article  Google Scholar 

  26. B. Cullity, Elements of X-ray diffraction, 3. print., Addison-Wesley, Reading Mass. (1967)

  27. K.R. Ahammed, M. Ashaduzzaman, S.C. Paul, M.R. Nath, S. Bhowmik, O. Saha, M.M. Rahaman, S. Bhowmik, T. Das Aka, Microwave assisted synthesis of zinc oxide (ZnO) nanoparticles in a noble approach: utilization for antibacterial and photocatalytic activity. SN Appl. Sci. (2020). https://doi.org/10.1007/s42452-020-2762-8

    Article  Google Scholar 

  28. I. John Berlin, L.V. Maneeshya, J.K. Thomas, P.V. Thomas, K. Joy, Enhancement of photoluminescence emission intensity of zirconia thin films via aluminum doping for the application of solid state lighting in light emitting diode. J. Lumin. 132, 3077–3081 (2012). https://doi.org/10.1016/j.jlumin.2012.06.027

    Article  Google Scholar 

  29. D.L. Wood, J. Tauc, Weak absorption tails in amorphous semiconductors. Phys. Rev. B 5, 3144–3151 (1972). https://doi.org/10.1103/PHYSREVB.5.3144

    Article  ADS  Google Scholar 

  30. G.H. Schoenmakers, D. Vanmaekelbergh, J.J. Kelly, The mechanism of current-doubling reactions at ZnO photoanodes. J. Chem. Soc. Faraday Trans. 93, 1127–1132 (1997). https://doi.org/10.1039/A606734D

    Article  Google Scholar 

  31. T. Prakash, R. Jayaprakash, G. Neri, S. Kumar, Synthesis of ZnO Nanostructures by microwave irradiation using albumen as a template. J. Nanoparticles. 2013, 1–8 (2013). https://doi.org/10.1155/2013/274894

    Article  Google Scholar 

  32. A.M. Peiró, C. Domingo, J. Peral, X. Domènech, E. Vigil, M.A. Hernández-Fenollosa, M. Mollar, B. Marí, J.A. Ayllón, Nanostructured zinc oxide films grown from microwave activated aqueous solutions. Thin Solid Films 483, 79–83 (2005). https://doi.org/10.1016/j.tsf.2004.12.030

    Article  ADS  Google Scholar 

  33. G. Sun, M. Cao, Y. Wang, C. Hu, Y. Liu, L. Ren, Z. Pu, Anionic surfactant-assisted hydrothermal synthesis of high-aspect-ratio ZnO nanowires and their photoluminescence property. Mater. Lett. 21–22, 2777–2782 (2006). https://doi.org/10.1016/J.MATLET.2006.01.088

    Article  Google Scholar 

  34. B. Krishnan, L. Irimpan, P. Radhakrishnan, V.P.N. Nampoori, Linear and nonlinear optical characteristics of ZnO-SiO2 nanocomposites. Appl. Opt. 47(24), 4345–4351 (2008). https://doi.org/10.1364/AO.47.004345

    Article  ADS  Google Scholar 

  35. D. Malpicci, E. Lucenti, C. Giannini, A. Forni, C. Botta, E. Cariati, Prompt and long-lived anti-kasha emission from organic dyes. Molecules (2021). https://doi.org/10.3390/molecules26226999

    Article  Google Scholar 

  36. M. Chergui, Empirical rules of molecular photophysics in the light of ultrafast spectroscopy. Pure Appl. Chem. 87, 525–536 (2015). https://doi.org/10.1515/pac-2014-0939

    Article  Google Scholar 

  37. N.J. Turro, V. Ramamurthy, W. Cherry, W. Farneth, The effect of wavelength on organic photoreactions in solution. Reactions from upper excited states. Chem. Rev. 78, 125–145 (1978). https://doi.org/10.1021/cr60312a003

    Article  Google Scholar 

  38. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005). https://doi.org/10.1063/1.1992666

    Article  ADS  Google Scholar 

  39. S. Hong, T. Joo, W. Il Park, Y.H. Jun, G.-C. Yi, Time-resolved photoluminescence of the size-controlled ZnO nanorods. Appl. Phys. Lett. 83, 4157 (2003). https://doi.org/10.1063/1.1627472

    Article  ADS  Google Scholar 

  40. S.F. Chichibu, T. Onuma, M. Kubota, A. Uedono, T. Sota, A. Tsukazaki, A. Ohtomo, M. Kawasaki, Improvements in quantum efficiency of excitonic emissions in ZnO epilayers by the elimination of point defects. J. Appl. Phys. 99, 093505 (2006). https://doi.org/10.1063/1.2193162

    Article  ADS  Google Scholar 

  41. T. Koida, A. Uedono, A. Tsukazaki, T. Sota, M. Kawasaki, S.F. Chichibu, Direct comparison of photoluminescence lifetime and defect densities in ZnO epilayers studied by time-resolved photoluminescence and slow positron annihilation techniques. Phys. Status Solidi Appl. Res. 201, 2841–2845 (2004). https://doi.org/10.1002/PSSA.200405035

    Article  ADS  Google Scholar 

  42. Y. Zhong, A.B. Djurišić, Y.F. Hsu, K.S. Wong, G. Brauer, C.C. Ling, W.K. Chan, Exceptionally long exciton photoluminescence lifetime in ZnO tetrapods. J. Phys. Chem. C 112, 16286–16295 (2008). https://doi.org/10.1021/JP804132U

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the DSKPDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aparna Thankappan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thankappan, A., Thomas, S. Structural and Spectral Characterization of ZnO Nanowires by Thermal Decomposition Method — a Comparative Study. Braz J Phys 52, 131 (2022). https://doi.org/10.1007/s13538-022-01116-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-022-01116-5

Keywords

Navigation