Skip to main content
Log in

Fe78Si9B13 amorphous powder core with improved magnetic properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effects of pre-annealing treatments on the soft magnetic properties of the corresponding Fe78Si9B13 amorphous powder cores were investigated. The amorphous powder cores prepared from pre-annealed powder have better soft magnetic properties compared with unpretreated powder core in the as-cast state. The result shows that the powder after pre-annealing in a magnetic field presents a regular domain structure and the soft magnetic properties of the corresponding powder cores are greatly improved. As the result, the magnetic-field annealed powder core has the highest effective permeability (μ e) of 37, which is 23 % higher than the as-cast one and 7 % than only vacuum-annealed one. The total core loss (P cv) for the core annealed in magnetic field is only 141 W/kg (100 kHz, 50 mT) and as low as 36 % of the P cv for the powder core in the as-cast state. The one annealed in magnetic field also exhibits the best DC bias properties of 92 %. This work provides a novel approach to realizing low P cv and high μ e for Fe78Si9B13 powder cores and also validates the application prospect of powder cores in the work condition of different ripple currents, different loads and a wide frequency (f) range (10 kHz–10 MHz).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Crossley, Powdered Iron Cores. J. Appl. Phys. 14, 451–455 (1943)

    Article  Google Scholar 

  2. S.G. Mariappan, A. Moazenzadeh, U. Wallrabe, Polymer Magnetic Composite Core Based Microcoils and Microtransformers for Very High Frequency Power Applications. Micromachines 7, 60 (2016)

    Article  Google Scholar 

  3. A. Hilal, R. Marie-Ange, S. Fabien, Power Loss Prediction and Precise Modeling of Magnetic Powder Components in DC-DC Power Converter Application. IEEE Trans. Power Electron. 30, 2232–2238 (2014)

    Article  Google Scholar 

  4. S. Yan, L. Dong, Z. Chen, X. Wang, Z. Feng, The effect of the microstructure on the DC-bias superposition characteristic of NiCuZn ferrite. J. Magn. Magn. Mater. 353, 47–50 (2014)

    Article  Google Scholar 

  5. H.J. Liu, H.L. Su, W.B. Geng, Z.G. Sun, T.T. Song, X.C. Tong, Z.Q. Zou, Y.C. Wu, Y.W. Du, Effect of Particle Size Distribution on the Magnetic Properties of Fe-Si-Al Powder Core. J. Supercond. Nov. Magn. 29, 463–468 (2016)

    Article  Google Scholar 

  6. H. Shokrollahi, K. Janghorban, Soft magnetic composite materials (SMCs). J. Mater. Process. Technol. 189, 1–12 (2007)

    Article  Google Scholar 

  7. D. Liu, C. Wu, M. Yan, Investigation on sol–gel Al2O3 and hybrid phosphate-alumina insulation coatings for FeSiAl soft magnetic composites. J. Mater. Sci. 50, 6559–6566 (2015)

    Article  Google Scholar 

  8. A. Makino, T. Kubota, M. Makabe, C.T. Chang, A. Inoue, FeSiBP metallic glasses with high glass-forming ability and excellent magnetic properties. Mater. Sci. Eng. B 148, 166–170 (2008)

    Article  Google Scholar 

  9. J.W. Wang, R. Li, N.B. Hua, L. Huang, T. Zhang, Ternary Fe–P–C bulk metallic glass with good soft-magnetic and mechanical properties. Scr. Mater. 65, 536–539 (2011)

    Article  Google Scholar 

  10. Z.A. Li, A.D. Wang, C.T. Chang, Y.G. Wang, B.S. Dong, S.X. Zhou, Synthesis of FeSiBPNbCu nanocrystalline soft-magnetic alloys with high saturation magnetization. J. Alloys Comp. 611, 197–201 (2014)

    Article  Google Scholar 

  11. D. Wei, X. Wang, Y. Nie, Z.K. Feng, R.Z. Gong, Y.J. Chen, V.G. Harris, Low loss Sendust powder cores comprised of particles coated by sodium salt insulating layer. J. Appl. Phys. 117, 17A921 (2015)

    Article  Google Scholar 

  12. X.Y. Wang, Z.C. Lu, C.W. Lu, G.M. Li, D.R. Li, Magnetic Properties of FeSiBC Amorphous Alloy Powder Cores Using Mechanical-crushed Powder. J. Iron Steel Res. Int. 21, 1055–1058 (2014)

    Article  Google Scholar 

  13. M. Streckova, J. Füzer, L. Kobera, J. Brus, A comprehensive study of soft magnetic materials based on FeSi spheres and polymeric resin modified by silica nanorods. Mater. Chem. Phys. 147, 649–660 (2014)

    Article  Google Scholar 

  14. W. Ding, L.T. Jiang, B.Q. Li, G.Q. Chen, S.F. Tian, G.H. Wu, Microstructure and Magnetic Properties of Soft Magnetic Composites with Silicate Glass Insulation Layers. J. Supercond. Nov. Magn. 27, 239–245 (2014)

    Article  Google Scholar 

  15. Z.M. Zhang, W. Xu, T. Guo, Y.Z. Jiang, M. Yan, Effect of processing parameters on the magnetic properties and microstructures of molybdenum permalloy compacts made by powder metallurgy. J. Alloys Compd. 594, 153–157 (2014)

    Article  Google Scholar 

  16. K. Suzuki, N. Ito, S. Saranu, U. Herr, A. Michels, J.S. Garitaonandia, Magnetic domains and annealing-induced magnetic anisotropy in nanocrystalline soft magnetic materials. J. Appl. Phys. 103, 07E730 (2008)

    Article  Google Scholar 

  17. T.V. Basova, I.V. Jushina, A.K. Ray, Influence of post-deposition annealing under magnetic field on the structure of phthalocyanine thin films. J. Mater. Sci. Mater. Electron. 26, 4716–4721 (2015)

    Article  Google Scholar 

  18. I. Skorvánek, J. Marcin, J. Turcanová, J. Kovác, P. Svec, Improvement of soft magnetic properties in Fe38Co38Mo8B15Cu amorphous and nanocrystalline alloys by heat treatment in external magnetic field. J. Alloys Comp. 504S, S135–S138 (2010)

    Article  Google Scholar 

  19. H. Fujii, V.A. Yardley, T. Matsuzaki, S. Tsurekawa, Nanocrystallization of Fe73.5Si13.5B9Nb3Cu1 soft-magnetic alloy from amorphous precursor in a magnetic field. J. Mater. Sci. 43, 3837–3847 (2008)

    Article  Google Scholar 

  20. A. Kolano-Burian, Magnetic domain structure and transverse induced magnetic anisotropy in CoFeCuNbSiB alloys. J. Appl. Phys. 114, 153911 (2013)

    Article  Google Scholar 

  21. K. Suzuki, N. Ito, J.S. Garitaonandia, J.D. Cashion, High saturation magnetization and soft magnetic properties of nanocrystalline (Fe, Co)90Zr7B3 alloys annealed under a rotating magnetic field. J. Appl. Phys. 99, 08F114 (2006)

    Article  Google Scholar 

  22. M. Miglierini, V. Prochazka, R. Ruffer, R. Zboril, In situ crystallization of metallic glasses during magnetic field annealing. Acta Mater. 91, 50–56 (2015)

    Article  Google Scholar 

  23. E. Nunes, R. Pereira, J. Freitas, E. Passamani, C. Larica, A. Fernaends, Thermal stability and magnetic properties of FeSiB amorphous alloy. J. Mater. Sci. 41, 1649–1651 (2006)

    Article  Google Scholar 

  24. R. Onodera, S. Kimura, K. Watanabe, Y. Yokoyama, A. Makino, K. Koyama, Nucleation control for fine nano crystallization of Fe-based amorphous alloy by high-magnetic-field annealing. J. Alloys Compd. 637, 213–218 (2015)

    Article  Google Scholar 

  25. Y.Q. Dong, Q.K. Man, C.T. Chang, B.L. Shen, X.M. Wang, R.W. Li, Preparation and magnetic properties of (Co0.6Fe0.3Ni0.1)70-x (B0.811Si0.189)25+xNb5 bulk glassy alloys. J. Mater. Sci. Mater. Electron. 26, 7006–7012 (2015)

    Article  Google Scholar 

  26. M. Hiraoka, Z. Akase, D. Shindo, Y. Ogawa, Y. Yoshizawa, Observation of Magnetic Domain Structure in Fe81B15Si4 Amorphous Alloy by Lorentz Microscopy and Electron Holography. Mater. Trans. 50, 2839–2843 (2009)

    Article  Google Scholar 

  27. H. Wang, S.P. Wong, W.Y. Cheung, N. Ke, J.B. Xu, W.Q. Li, Study of microstructure and magnetic domain structure in sputtered (Ni66Fe22Co12)xC1−x nanocomposite films. J. Mater. Sci. Mater. Electron. 13, 419–424 (2002)

    Article  Google Scholar 

  28. I. Garcia, N. Iturriza, J.J. Val, H. Grande, Magnetic force microscopy characterization of heat and current treated Fe40Ni38Mo4B18 amorphous ribbons. J. Magn. Magn. Mater. 322, 1822–1827 (2010)

    Article  Google Scholar 

  29. X.A. Fan, Z.Y. Wu, G.Q. Li, J. Wang, Z.D. Xiang, Z.H. Gan, High resistivity and low core loss of intergranular insulated Fe–6.5 wt% Si/SiO2 composite compacts. Mater. Des. 89, 1251–1258 (2016)

    Article  Google Scholar 

  30. P. Jang, B. Lee, G. Choi, Effects of annealing on the magnetic properties of Fe–6.5 % Si alloy powder cores. J. Appl. Phys. 103, 07E743 (2008)

    Article  Google Scholar 

  31. Y.P. Liu, Y.D. Yi, W. Shao, Y.F. Shao, Microstructure and magnetic properties of soft magnetic powder cores of amorphous and nanocrystalline alloys. J. Magn. Magn. Mater. 330, 119–133 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 50871105), the Zhengzhou Project of research and development of new industry (Grant No.153PXXCY181),Ningbo Municipal Nature Science Foundation (Grant No. 2015A610008), Equipment Project for Research of the Chinese Academy of Sciences (Grant No. yz201434) and Zhejiang Province Public Technology Research and Industrial Projects (2016C31025).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fushan Li or Chuntao Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Dong, Y., Li, F. et al. Fe78Si9B13 amorphous powder core with improved magnetic properties. J Mater Sci: Mater Electron 28, 1180–1185 (2017). https://doi.org/10.1007/s10854-016-5644-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5644-5

Keywords

Navigation