Skip to main content
Log in

Optimum sintering temperature for thermoelectric properties of low-cost CuAl0.90Fe0.10O2 material

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Sintering temperature is a key parameter that affects thermoelectric properties. In this study, a suitable temperature to synthesize thermoelectric properties of low-cost delafossite CuAl0.90Fe0.10O2 was investigated through the sintering of CuO, Al2O3 and Fe2O3 mixed powder at 1333, 1423 and 1473 K. The optimum sintering temperature is at 1333 K, where the single-phase CuAlO2 and the highest dimensionless figure of merit of 0.014 at the measured temperature of 873 K were observed. CuAlO2 with trace amounts of CuO, and CuAl2O4 and CuO were found at the sintering temperature of 1423 and 1473 K, respectively. The highest Seebeck coefficient and thermal conductivity was at the sintering temperature of 1473 K, with the maximum electrical conductivity and power factor at the measured temperature of 873 K of 5.7 Ω−1 cm−1 and 9.81 × 10−5 Wm−1 K−2, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. Park, K.Y. Ko, W.-S. Seo, J. Eur. Ceram. Soc. 25, 2219 (2005)

    Article  Google Scholar 

  2. Y.-C. Liou, U.-R. Lee, J. Alloy. Compd. 467, 496 (2009)

    Article  Google Scholar 

  3. Y.-C. Liou, L.-S. Chang, Y.-M. Lu, H.-C. Tsai, U.-R. Lee, Ceram. Int. 38, 3619 (2012)

    Article  Google Scholar 

  4. K. Park, K.Y. Ko, J.K. Seong, S. Nahm, J. Eur. Ceram. Soc. 27, 3735 (2007)

    Article  Google Scholar 

  5. K. Park, K.Y. Ko, W.-S. Seo, Mater. Sci. Eng. B 129, 1 (2006)

    Article  Google Scholar 

  6. K. Park, K.Y. Ko, H.-C. Kwon, S. Nahm, J. Alloy. Compd. 437, 1 (2007)

    Article  Google Scholar 

  7. S. Yanagiya, N. van Nong, J. Xu, N. Pryds, Materials 3, 318 (2010)

    Article  Google Scholar 

  8. T. Stöcker, J. Exner, M. Schubert, M. Streibl, R. Moos, Materials 9, 227 (2016)

    Article  Google Scholar 

  9. I. Terasaki, Y. Sasago, K. Uchinokura, Phys. Rev. B 56, R12685 (1997)

    Article  Google Scholar 

  10. A.C. Masset, C. Michel, A. Maignan, M. Hervieu, O. Toulemonde, F. Studer, B. Raveau, J. Hejtmanek, Phys. Rev. B 62, 166 (2000)

    Article  Google Scholar 

  11. M. Ohtaki, T. Tsubota, K. Eguchi, H. Arai, J. Appl. Phys. 79, 1816 (1996)

    Article  Google Scholar 

  12. S. Ohta, H. Ohta, K. Koumoto, J. Ceram. Soc. Jpn. 114, 102 (2006)

    Article  Google Scholar 

  13. I. Terasaki, Phys. B 328, 63 (2003)

    Article  Google Scholar 

  14. K. Fujita, T. Mochida, K. Nakamura, J. Appl. Phys. 40, 4644 (2001)

    Article  Google Scholar 

  15. Y. Ando, N. Miyamoto, K. Segawa, T. Kawata, I. Terasaki, Phys. Rev. B 60, 10580 (1999)

    Article  Google Scholar 

  16. K. Koumoto, H. Koduka, W.-S. Seo, J. Mater. Chem. 11, 251 (2001)

    Article  Google Scholar 

  17. K. Park, K.Y. Ko, W.-S. Seo, J. Eur. Ceram. Soc. 25, 2219 (2005)

    Article  Google Scholar 

  18. Y.-C. Liou, L.-S. Chang, Y.-M. Lu, H.-C. Tsai, U.-R. Lee, Ceram. Int. 38, 3619 (2012)

    Article  Google Scholar 

  19. N. Wongcharoen, T. Gaewdang, Phys. Procedia 2, 101 (2009)

    Article  Google Scholar 

  20. K. Tonooka, K. Shimokawa, O. Nishimura, Thin Solid Films 441, 129 (2002)

    Article  Google Scholar 

  21. W.D. Kingery, H.K. Bowen, D.R. Uhlmann, Introduction to Ceramics, 2nd edn. (John Wiley & Sons, New York, 1976), p. 519

    Google Scholar 

  22. Y. Lu, T. Nozue, N. Feng, K. Sagara, H. Yoshida, Y. Jin, J. Alloy. Compd. 650, 558 (2015)

    Article  Google Scholar 

  23. E.A. Kirupa, A.M.E. Raj, C. Ravidhas, J. Mater. Sci. Mater. Electron. (2016). doi:10.1007/s10854-016-4930-6

    Google Scholar 

  24. X. Zhang, H. Hao, Q. He, X. Hu, Phys. B 394, 118 (2007)

    Article  Google Scholar 

  25. H.F. Jiang, H.C. Lei, X.B. Zhu, G. Li, Z.R. Yang, W.H. Song, J.M. Dai, Y.P. Sun, Y.K. Fu, J. Alloys Compd. 487, 404 (2009)

    Article  Google Scholar 

  26. S.-J. Liu, H. Wang, J.-W. Xu, M.-F. Ren, L. Yang, J.-H. Ju, J. Mater. Sci. Mater. Electron 22, 666 (2011)

    Article  Google Scholar 

  27. L.D. Zhao, B.-P. Zhang, W.S. Liu, H.L. Zhang, J.-F. Li, J. Alloys Compd. 467, 91 (2009)

    Article  Google Scholar 

  28. H.J. Goldsmid, Materials 2, 903 (2009)

    Article  Google Scholar 

  29. C. Ruttanapun, A. Wichainchai, W. Prachamon, A. Yangthaisong, A. Charoenphakdee, T. Seetawan, J. Alloys Compd. 509, 4588 (2011)

    Article  Google Scholar 

  30. P.A. Cox, Transition Metal Oxides An introduction to their Electronic Structure and Properties (Oxford University Press, Oxford, 1992), pp. 163–165

    Google Scholar 

  31. A.F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling (Infosearch Limited, London, 1957)

    Google Scholar 

  32. N. Schwartz, W. Tantraporn, W.J. van der Grinten, Advanced Energy Conversion (Pergamon Press, Great Britain, 1963)

    Google Scholar 

  33. T. Nozaki, K. Hayashi, T. Kajitani, J. Electron. Mater. 39, 1798 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang. We also appreciate the access to SEM imaging at the College of Advanced Manufacturing Innovation, King Mongkut’s Institute of Technology Ladkrabang and the DC four-terminal method at the Faculty of Science and Technology, Rajamangala University of Technology Suvarnabhumi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vilailuck Siriwongrungson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siriwongrungson, V., Sakulkalavek, A. & Sakdanuphab, R. Optimum sintering temperature for thermoelectric properties of low-cost CuAl0.90Fe0.10O2 material. J Mater Sci: Mater Electron 27, 11102–11109 (2016). https://doi.org/10.1007/s10854-016-5227-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5227-5

Keywords

Navigation