Skip to main content
Log in

Phase transformation and thermal stability of ZnSe QDs due to annealing: emergence of ZnO

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present study ZnSe quantum dots (QDs) were synthesized by chemical co-precipitation method using mercaptoethanol as the capping agent. These nanostructures were characterized for structure and surface morphology by using X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and Fourier transform infrared spectrometry respectively. The average size of ZnSe quantum dots from XRD and HRTEM is found to be 4–5 nm having cubic crystalline phase. Effect of annealing temperature, which were determined as phase transformation temperatures (299 and 426 °C) using differential scanning calorimetry has been investigated for structural and thermal stability of QDs. The XRD of annealed samples at temperatures 325 and 442 °C (slightly higher than the temperatures corresponding to two crystallization peaks in the DSC scan) have been carried out to find structural changes corresponding to these annealing temperatures. Sample annealed at 325 °C showed no change in the phase except improvement in intensity of peaks (crystallinity) whereas sample annealed at 442 °C showed transitions from cubic phase of ZnSe to ZnO and orthorhombic phases of ZnSeO4, ZnSeO3. Emergence of ZnO peaks in the XRD pattern of annealed samples have been further verified by Raman spectroscopy of the annealed samples. Besides this crystallization kinetics of ZnSe quantum dots has been employed to determine activation energies of these transitions due to oxidation by employing Kissinger, Augis Bennett and Ozawa’s models. Higher activation energy of crystallization corresponding to first crystallization peak shows that the cubic phase is more thermally stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. Wu, C. Wadia, W. Ma, B. Sadtler, A.P. Alivisatos, Synthesis and photovoltaic application of copper(I) sulfide nanocrystals. Nano Lett. 8, 2551–2555 (2008)

    Article  Google Scholar 

  2. I. Gur, N.A. Fromer, M.L. Geier, A.P. Alivisatos, Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 310, 462–465 (2005)

    Article  Google Scholar 

  3. S. Venkatachalam, D. Mangalaraj, S.K. Narayandass, K. Kim, J. Yi, Structure, optical and electrical properties of ZnSe thin films. Phys. B. Condens Matter. 27, 358 (2005)

    Google Scholar 

  4. A. Ndiaye, I. Youm, M. Cadene, Analysis of post-treatment deposition of solar cells thin polycrystalline n-CdS/p-CdTe. J. Sci. 1, 38–47 (2001)

    Google Scholar 

  5. M. Verma, D. Patidar, K.B. Sharma, N.S. Saxena, Phase transformations and thermal stability of CdSe quantum dots: cubic to hexagonal. J. Inorg. Organomet. Polym. 26, 75–80 (2016)

    Article  Google Scholar 

  6. R. Gangadharan, V. Jayalakshmi, J. Kalaiselvi, S. Mohan, R. Murugan, B. Palanivel, Electronic and structural properties of zinc chalcogenides ZnX (X = S, Se, Te). J. Alloys Compd. 359, 22–26 (2003)

    Article  Google Scholar 

  7. A. Kanti, P. Kumbhakar, Cubic-to-hexagonal phase transition and optical properties of chemically synthesized ZnS nanocrystals. Res. Phys. 2, 150–155 (2012)

    Google Scholar 

  8. S.R. Dhage, H.A. Colorado, H.T. Hahn, Photoluminescence properties of thermally stable highly crystalline CdS nanoparticles. Mater. Res. 16, 504–507 (2013)

    Article  Google Scholar 

  9. J.B. Rodrigues, J.C.D. Lima, C.E.M. Campos, T.A. Grandi, Temperature effects on mechanically alloyed nanometric ZnSe powder. Powder Technol. 189, 70–73 (2009)

    Article  Google Scholar 

  10. C.P. Shah, M. Kumar, P.N. Bajaj, Acid-induced synthesis of polyvinyl alcohol-stabilized selenium nanoparticles. Nanotechnology 18, 385607 (2007)

    Article  Google Scholar 

  11. M. Ardanuy, J.I. Velasco, V. Realinho, D. Arencón, A.B. Martínez, Non-isothermal crystallization kinetics and activity of filler in polypropylene/Mg–Al layered double hydroxide nanocomposites. Thermochem. Acta. 479, 45–52 (2008)

    Article  Google Scholar 

  12. D. Amaranatha Reddy, G. Murali, B. Poornaprakash, R.P. Vijayalakshmi, B.K. Reddy, Effect of annealing temperature on optical and magnetic properties of Cr doped ZnS nanoparticles. Solid State Commun. 152, 596 (2012)

    Article  Google Scholar 

  13. V.P. Zhdanov, M. Schwind, I. Zoric, B. Kasemo, Overheating and undercooling during melting and crystallization of metal nanoparticles. Physica E 42, 1990–1994 (2010)

    Article  Google Scholar 

  14. K. Yadav, Y. Dwivedi, N. Jaggi, Effect of annealing temperature on the structural and optical properties of ZnSe nanoparticles. J. Mater. Sci. Mater. Electron. 26, 2198–2204 (2015). doi:10.1007/s10854-015-2668-1

    Article  Google Scholar 

  15. A. Sobhani, M.S. Niasari, Optimized synthesis of ZnSe nanocrystals by hydrothermal method. J. Mater. Sci. Mater. Electron. 27, 293–303 (2016)

    Article  Google Scholar 

  16. E. Yildirim, H.M. Guburl, S. Alpdogan, M. Ari, E. Harputlu, K. Ocakoglu, The effect of annealing of ZnSe nanocrystal thin films in air atmosphere. Indian J. Phys. (2015). doi:10.1007/s12648-015-0810-9

    Google Scholar 

  17. E. Atabey, S. Wei, X. Zhang, H. Gu, X. Yan, Y. Huang, L. Shao, Q. He, J. Zhu, L. Sun, A.S. Kucknoor, A. Wang, Z. Guo, Fluorescent electrospun polyvinyl alcohol/CdSe@ ZnS nanocomposite fibers. J. Compos. Mater. 47, 3175–3185 (2013)

    Article  Google Scholar 

  18. M.M.A. Imran, D. Bhandari, N.S. Saxena, Kinetic studies of bulk Ge22Se78−xBix(x = 0, 4, and 8) semi-conducting glasses. J. Therm. Anal. Calorim. 65, 257–274 (2001)

    Article  Google Scholar 

  19. M. Avarmi, Kinetics of phase change. I general theory. J. Chem. Phys. 7, 1103–1112 (1939)

    Article  Google Scholar 

  20. M. Avarmi, Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J. Chem. Phys. 8, 12–224 (1940)

    Google Scholar 

  21. H.E. Kissinger, Reaction kinetics in differential thermal analysis. Anal. Chem. 29, 1702–1706 (1957)

    Article  Google Scholar 

  22. M. Verma, D. Patidar, K.B. Sharma, N.S. Saxena, Characterization and optical properties of CdSe and ZnSe quantum dots. J. Nanoelectron. Optoelectron. 10, 320–326 (2015)

    Article  Google Scholar 

  23. T. Spassov, S. Budurov, Crystallization behaviour of Fe–(Nb, Cu)–Si–B metallic glasses. J. Therm. Anal. 45, 1557–1563 (1995)

    Article  Google Scholar 

  24. Ramon Cusco, Esther Alarcon-Llado, Jordi Ibanez, Luis Artus, Juan Jimenez, Buguo Wang, Michael J. Callahan, Temperature dependence of Raman scattering in ZnO. Phys. Rev. B 75, 165202 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

Authors gratefully acknowledge the financial grant received from UGC, New Delhi (India) in the form of Emeritus Fellowship to Prof. N.S. Saxena and BSR fellowship (JRF) to Mr. Mahesh Verma. They also thank Mr. Gagan Choudhary, GTL, Jaipur for carrying out Raman measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Verma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, M., Kaswan, A., Patidar, D. et al. Phase transformation and thermal stability of ZnSe QDs due to annealing: emergence of ZnO. J Mater Sci: Mater Electron 27, 8871–8878 (2016). https://doi.org/10.1007/s10854-016-4912-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4912-8

Keywords

Navigation