Skip to main content
Log in

Effect of annealing temperature on the structural and optical properties of ZnSe nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present study, zinc selenide (ZnSe) nanoparticles (NPs) were synthesized by hydrothermal method and effect of annealing at different temperatures (100, 300, 500 and 700 °C) was monitored using various characterization techniques. It was observed and confirmed that ZnSe NPs oxidized on annealing at high temperature 700 °C and more than 70 % of ZnSe converted into ZnO NPs. The prepared NPs were characterized by X-ray diffraction and field emission scanning electron microscope, while spectroscopic characterizations were done by UV–Visible absorption, Photoluminescence (PL) emission, Raman scattering and Photoluminescence excitation (PLE) techniques. PL and PLE spectra confirmed strong interaction between the synthesized NPs, through the process of energy transfer, which resulted in bright blue–green colour emission of ZnSe and defect emissions of ZnO NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.K. Thottoli, A.K. Achuthanunni, J. Nano Chem. 3, 31 (2013)

    Article  Google Scholar 

  2. S. Mathew, P.R. Rejikumar, X. Joseph, N.V. Unnikrishnan, Opt. Mater. 29, 1689 (2007)

    Article  Google Scholar 

  3. S. Venkatachalam, D. Mangalaraj, S.K. Narayandass, K. Kim, J. Yi, Phys. B 358, 27 (2005)

    Article  Google Scholar 

  4. A. Ndiaye, I. Youm, M. Cadene, J. Sci. 1, 48 (2001)

    Google Scholar 

  5. V. Sivasubramanian, A.K. Arora, M. Premila, C.S. Sundar, V.S. Sastry, Phys. E 31, 93 (2006)

    Article  Google Scholar 

  6. D. Amaranatha Reddy, G. Murali, B. Poornaprakash, R.P. Vijayalakshmi, B.K. Reddy, Solid State Commun. 152, 596 (2012)

    Article  Google Scholar 

  7. N. Sankar, K. Ramachandran, J. Cryst. Growth 247, 157 (2003)

    Article  Google Scholar 

  8. Z. Lin, M. Wang, Y. Xue, X. Song, L. Zhang, X. Yao, Ferroelectrics 402, 66 (2010)

    Article  Google Scholar 

  9. P. Kumar, J. Singh, K. Ramam, A.C. Pandey, J. Nanosci. Nanotech. 13, 377 (2013)

    Article  Google Scholar 

  10. M.P. Deshpande, S.H. Chaki, N.H. Patel, S.V. Bhatt, B.H. Soni, J. Nano Electron. Phys. 3, 193 (2012)

    Google Scholar 

  11. P.V. Kamat, J. Phys. Chem. C 112, 18737 (2008)

    Article  Google Scholar 

  12. L. Peng, Y. Wang, Q. Dong, Z. Wang, Nano-Micro Lett. 2, 190 (2010)

    Article  Google Scholar 

  13. J. Lim, S. Jun, E. Jang, H. Baik, H. Kim, J. Cho, Adv. Mater. 19, 1927 (2007)

    Article  Google Scholar 

  14. K.R. Murali, A. Austine, D.C. Trivedi, Mater. Lett. 59, 2621 (2005)

    Article  Google Scholar 

  15. H. Wang, F. Du, Cryst. Res. Technol. 41, 23 (2006)

    Google Scholar 

  16. R. John, S.S. Florence, Chalcogenide Lett. 7, 269 (2010)

    Google Scholar 

  17. J.P. Borah, J. Barman, K.C. Sharma, Chalcogenide Lett. 5, 201 (2008)

    Google Scholar 

  18. G. Ghosh, M.K. Naskar, A. Patra, M. Chatterjee, J. Opt. Mater. 28, 1047 (2006)

    Article  Google Scholar 

  19. R. Tamrakar, M. Ramrakhiani, B.P. Chandra, Open Nano Sci. 2, 12 (2008)

    Article  Google Scholar 

  20. L.S. Wang, R.Y. Hong, B. Reddy (eds.), Advances in Nanocomposites—Synthesis, Characterization and Industrial Applications (InTech Publications, India, 2011)

    Google Scholar 

  21. G. Skandan, A. Singhal, C.I. Contescu, K. Putyera (eds.), Dekker Encyclopedia of Nanoscience and Nanotechnology (Taylor and Francis Group, New York, 2009), p. 2788

    Google Scholar 

  22. S.S. Kale, C.D. Lokhande, Mater. Chem. Phys. 62, 103 (2000)

    Article  Google Scholar 

  23. J. Xu, X. Yang, Q.D. Yang, T.L. Wong, S.T. Lee, W.J. Zhang, C.S. Lee, J. Mater. Chem. 22, 13374 (2012)

    Article  Google Scholar 

  24. G. Lu, H. An, Y. Chen, J. Huang, H. Zhang, B. Xiang, Q. Zhao, D. Yu, W. Du, J. Cryst. Growth 274, 530 (2005)

    Article  Google Scholar 

  25. S. Sahoo, S.K. Barik, A.P.S. Gaur, M. Correa, G. Singh, R.K. Katiyar, V.S. Puli, J. Liriano, R.S. Katiyar, J. Solid State Sci. Tech. 1, 140 (2012)

    Article  Google Scholar 

  26. R. Seth, K.L. Gosain, N. Jaggi, S. Panwar, S. Kumar, Nonlinear Opt. Quantum Opt 44, 259 (2012)

    Google Scholar 

  27. I. Shalish, H. Temkin, V. Narayanamurti, Phys. Rev. B 69, 245401 (2004)

    Article  Google Scholar 

  28. Y. Dwivedi, J. Nanoeng. Nanomanuf. 3, 337 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Dr. Inderpreet Kaur, Scientist Central Scientific Instrument Organisation, Chandigarh, Punjab for helping in recording FE-SEM and Raman spectra of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neena Jaggi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, K., Dwivedi, Y. & Jaggi, N. Effect of annealing temperature on the structural and optical properties of ZnSe nanoparticles. J Mater Sci: Mater Electron 26, 2198–2204 (2015). https://doi.org/10.1007/s10854-015-2668-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2668-1

Keywords

Navigation