Skip to main content

Advertisement

Log in

Fabrication, sintering and characterization of cordierite glass–ceramics for low temperature co-fired ceramic substrates from kaolin

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Non-stoichiometric α-cordierite glass ceramic doped with H3BO3 and NH4H2PO4 as additives has been fabricated successfully from sandy kaolin as low temperature co-fired ceramics (LTCC) substrate materials. The sintering and crystallization behaviors of the glass–ceramics were investigated by the differential scanning calorimetry, X-ray diffraction, and field emission scanning electron microscope. In addition, various physical properties were characterized, such as dielectric properties, thermal expansion and flexural strength. The results indicated that there was only onefold α-cordierite formed from MgO–Al2O3–SiO2 glasses in the temperature range from 875 to 925 °C. The glass–ceramics could been highly densified at any experimental temperature and they showed excellent properties: low dielectric constants in the range of 5.5–7.5, low dielectric losses in the range of 0.015–0.025, low coefficients of thermal expansion between 1.22–4.32 × 10−6 K−1 and applicable flexural strength at the level from 110 to 145 MPa. All of the performance qualified cordierite glass ceramic to be used as potential LTCC substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.U. Knickerbocker, S.H. Knickerbocker, Low-temperature co-fired ceramic chip carriers, in Handbook of Advanced Materials, ed. by J.K. Wessel (Wiley, New York, 2004)

    Google Scholar 

  2. Y. Imanaka, Multilayered Low Temperature Cofired Ceramics (LTCC) Technology (Springer US, 2005)

  3. S. Yuzo, K. Yoshinobu, K. Keiichiro, K. Masayuki, T. Hideo, IEEE Trans. Compon. Hybrids Manuf. Technol. 13, 751–758 (1990)

    Article  Google Scholar 

  4. S. Wang, H. Lu, Z. Hou, Sol–emulsion–gel synthesis of cordierite ceramics for high-frequency multilayer chip inductors. Ceram. Int. 39(2), 991–997 (2013)

    Article  Google Scholar 

  5. S. Mei, J. Yang, J.M.F. Ferreira, The fabrication and characterisation of low-k cordierite-based glass–ceramics by aqueous tape casting. J. Eur. Ceram. Soc. 24(2), 295–300 (2004)

    Article  Google Scholar 

  6. M.T. Sebastian, H. Jantunen, Low loss dielectric materials for LTCC applications: a review. Int. Mater. Rev. 53(2), 57–90 (2008)

    Article  Google Scholar 

  7. G. Chen, Sintering, crystallization, and properties of CaO doped cordierite-based glass–ceramics. J. Alloys Compd. 455(1–2), 298–302 (2008)

    Article  Google Scholar 

  8. M. Majumder, S. Mukhopadhyay, O. Parkash, D. Kumar, Sintering and crystallization behavior of chemically prepared cordierite for application in electronic packaging. Ceram. Int. 30(6), 1067–1070 (2004)

    Article  Google Scholar 

  9. S. Hwang, J. Wu, Effect of composition on micro-structural development in MgO–Al2O3–SiO2 glass–ceramics. J. Am. Ceram. Soc. 84, 1108–1112 (2001)

    Article  Google Scholar 

  10. G. Chen, X. Liu, Fabrication, characterization and sintering of glass–ceramics for low-temperature co-fired ceramic substrates. J. Mater. Sci. Mater. Electr. 15, 595–600 (2004)

    Article  Google Scholar 

  11. J. Wu, Z. Li, Y. Huang, F. Li, Q. Yang, Fabrication and characterization of low temperature co-fired cordierite glass–ceramics from potassium feldspar. J. Alloys Compd. 583, 248–253 (2014)

    Article  Google Scholar 

  12. G. Chen, Sintering, crystallization, and properties of CaO doped cordierite-based glass–ceramics. J. Alloys Compd. 455, 298–302 (2008)

    Article  Google Scholar 

  13. H. Shao, T. Wang, Q. Zhang, Preparation and properties of CaO–SiO2–B2O3 glass–ceramic at low temperature. J. Alloys Compd. 484, 2–5 (2009)

    Article  Google Scholar 

  14. J. Banjuraizah, H. Mohamad, Z.A. Ahmad, Densification and crystallization of non-stoichiometric cordierite glass with excess MgO synthesized from kaolin and talc. J. Am. Ceram. Soc. 94, 687–694 (2011)

    Article  Google Scholar 

  15. G.H. Chen, Effect of ZnO addition on properties of cordierite based glass–ceramics. J. Mater. Sci. Mater. Electr. 18, 1253–1257 (2007)

    Article  Google Scholar 

  16. Y. Li, H. Qian, X. Cheng, Fabrication of dense cordierite ceramic through reducing Al2O3 mole ratio. Mater. Lett. 116, 262–264 (2014)

    Article  Google Scholar 

  17. Z. Li, W. Jianfang, L. Song, Effect of composition on sinter-crystallization and properties of low temperature co-fired α-cordierite glass–ceramics. J. Eur. Ceram. Soc. 34, 3981–3991 (2014)

    Article  Google Scholar 

  18. S. Zhu, S. Ding, H.A. Xi, Q. Li, R. Wang, Preparation and characterization of SiC/cordierite composite porous ceramics. Ceram. Int. 33, 115–118 (2007)

    Article  Google Scholar 

  19. E. Ozel, S. Kurama, Production of cordierite ceramic by aqueous tape casting process. J. Mater. Process. Technol. 198, 68–72 (2008)

    Article  Google Scholar 

  20. K.B. Schwartz, D.B. Leong, R.L. McConvile, Structural chemistry of synthetic cordierite: evidence for solid solutions and disordered compositional domains in Bi-flux-grown Mg-cordierites. Phys. Chem. Miner. 20(8), 563–574 (1994)

    Article  Google Scholar 

  21. P. Amista, M. Cesari, A. Montenero, G. Gnappi, L. Lan, Crystallization behaviour in the system MgO·Al2O3·SiO2. J. Non-Cryst. Solids 192(268), 529–533 (1995)

    Article  Google Scholar 

  22. N.J. Azín, M.A. Camerucci, A.L. Cavalieri, Crystallisation of non-stoichiometric cordierite glasses. Ceram. Int. 31, 189–195 (2005)

    Article  Google Scholar 

  23. J. Banjuraizah, H. Mohamad, Z.A. Ahmad, Effect of melting temperatures on the crystallization and densification of 2.8MgO·1.5Al2O3·5SiO2 glass–ceramic synthesized from mainly talc and kaolin. J. Alloys Compd. 509, 1874–1879 (2011)

    Article  Google Scholar 

  24. B. Schwartz, Microelectronics packaging. Am. Ceram. Soc. Bull. 63, 577–581 (1984)

    Google Scholar 

  25. J. Chen, H. Wang, S. Feng, H. Ma, D. Deng, S. Xu, Effects of CaSiO3 addition on sintering behavior and microwave dielectric properties of Al2O3 ceramics. Ceram. Int. 37, 989–993 (2011)

    Article  Google Scholar 

  26. Y. Fang, L. Li, Q. Xiao, X.M. Chen, Preparation and microwave dielectric properties of cristobalite ceramics. Ceram. Int. 38, 4511–4515 (2012)

    Article  Google Scholar 

  27. S.O. Yoon, S.H. Shim, K.S. Kim, J.G. Park, S. Kim, Low-temperature preparation and microwave dielectric properties of ZBS glass–Al2O3 composites. Ceram. Int. 35, 1271–1275 (2009)

    Article  Google Scholar 

  28. S.J. Penn, N.M.N. Alford, A. Templeton, X. Wang, M. Xu, M. Reece, K. Schrapel, Effect of porosity and grain size on the microwave dielectric properties of sintered alumina. J. Am. Ceram. Soc. 80, 1885–1888 (1997)

    Article  Google Scholar 

  29. A.H. Kumar, S. Knickerbocker, R.R. Tummala, Sinterable glass–ceramics for high-performance substrates, in 42nd Electronic Components and Technology Conference (San Diego, 1992), pp. 678–681

  30. J. Banjuraizah, H. Mohamad, Z.A. Ahmad, Thermal expansion coefficient and dielectric properties of non-stoichiometric cordierite compositions with excess MgO mole ratio synthesized from mainly kaolin and talc by the glass crystallization method. J. Alloys Compd. 494(1), 256–260 (2010)

    Article  Google Scholar 

  31. J. Banjuraizah, H. Mohamad, Z.A. Ahmad, Crystal structure of single phase and low sintering temperature of α-cordierite synthesize d from talc and kaolin. J. Alloys Compd. 482, 429–436 (2009)

    Article  Google Scholar 

  32. M.A. Camerucci, G. Urretavizcaya, M.S. Castro, A.L. Cavalieri, Electrical properties and thermal expansion of cordierite and cordierite-mullite materials. J. Eur. Ceram. Soc. 21, 2917–2923 (2001)

    Article  Google Scholar 

  33. T.S. Sasikala, M.N. Suma, P. Mohanan, C. Pavithran, M.T. Sebastian, Forsterite-based ceramic–glass composites for substrate applications in microwave and millimeter wave communications. J. Alloys Compd. 461, 555–559 (2008)

    Article  Google Scholar 

  34. B.P. Kumar, H.H. Kumar, D.K. Kharat, Effect of porosity on dielectric properties and microstructure of porous PZT ceramics. Mater. Sci. Eng. B 127, 130–133 (2006)

    Article  Google Scholar 

  35. S.S.V.S.S. Vepa, A.M. Umarji, Effect of substitution of CaO on thermal expansion of cordierite (Mg2Al4Si5O18). J. Am. Ceram. Soc. 76, 1873–1876 (1993)

    Article  Google Scholar 

  36. J.M. Heintz, L. Rabardel, M. Al Qaraoui et al., New low thermal expansion ceramics: sintering and thermal behavior of Ln1/3 Zr2 (PO4)3-based composites. J. Alloys Compd. 250, 515–519 (1997)

    Article  Google Scholar 

  37. T. Harada, T. Hamanaka, K. Hamaguchi et al., Cordierite honeycomb-structural body and a method for producing the same. U.S. Patent: 4869944

Download references

Acknowledgments

The work was financially supported by Department of Land and Resources in Heilongjiang Province (KH156159).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, L., Li, Z., Li, G. et al. Fabrication, sintering and characterization of cordierite glass–ceramics for low temperature co-fired ceramic substrates from kaolin. J Mater Sci: Mater Electron 27, 8504–8511 (2016). https://doi.org/10.1007/s10854-016-4866-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4866-x

Keywords

Navigation