Skip to main content
Log in

Structural chemistry of synthetic cordierite: Evidence for solid solutions and disordered compositional domains in Bi-flux-grown Mg-cordierites

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The structure, crystal chemistry, and microstructure of disordered and ordered Mg-cordierites synthesized in a bismuth oxide flux system have been studied by a combination of x-ray and neutron powder diffraction and quantitative x-ray microanalysis using analytical electron microscopy. Microchemical data obtained on Bi-flux cordierites using energy-dispersive x-ray analysis is interpreted through comparison with data collected on stoichiometric Mg2Al4Si5O18 glass and α- and β-cordierite samples synthesized by subsolidus crystallization of the glass. Bi-flux cordierites crystallize in both the hexagonal and orthorhombic polymorphs and contain 5 to 10 at% occupancy of bismuth on the C1 and C2 channel sites. The microstructure of Bi-flux α-cordierite is characterized by the existence of local domains of disordered cordierite solid solutions with variable composition and significant vacancy concentrations on the octahedral site. The β-cordierites have a more homogeneous microstructure but are still Al-deficient, Si-rich solid solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armbruster T (1985) Crystal structure refinement, Si, Al-ordering, and twinning in “pseudo-hexagonal” Mg-cordierite. Neues Jb Min M 6:255–267

    Google Scholar 

  • Armbruster T, Bloss FD (1981) Mg-cordierite: Si/Al ordering, optical properties, and distortion. Contrib Mineral Petrol 77:332–336

    Google Scholar 

  • Bridge DR, Holland D, McMillan PW (1985) Development of the alpha-cordierite phase in glass ceramics for use in electronic devices. Glass Technol 26:286–292

    Google Scholar 

  • Carpenter MA, Putnis A, Navrotsky A, McConnell JDC (1983) Enthalpy effects associated with Al/Si ordering in anhydrous Mg-cordierite. Geochim Cosmochim Acta 47:899–906

    Google Scholar 

  • Cliff G, Lorimer GW (1975) The quantitative analysis of thin specimens. J Microsc 103:203–207

    Google Scholar 

  • Cohen JP, Ross FK, Gibbs GV (1977) An x-ray and neutron diffraction study of hydrous low cordierite. Amer Mineral 62:67–78

    Google Scholar 

  • Dupon RW, McConville RL, Musolf DJ, Tanous AC, Thompson MS (1990a) Preparation of cordierite below 1000° C via bismuth oxide flux. J Amer Ceram Soc 73:335–339

    Google Scholar 

  • Dupon RW, Tanous AC, Thompson MS (1990b) Kinetics and mechanism of the crystallization of Mg2Al4Si5O18 (cordierite) from MgAl2O4 and SiO2 in the presence of bismuth oxide flux. Chem Material 2:728–731

    Google Scholar 

  • Gibbs GV (1966) The polymorphism of cordierite I: The crystal structure of low cordierite. Amer Mineral 51:1068–1087

    Google Scholar 

  • Gossner B (1928) Über strukturelle Beziehungen zwischen Beryll und Cordierit. Centralbl Min, Abt A:204–207

  • Gregory AG, Veasey TJ (1971) Review: The crystallization of cordierite glass. Part 1. A review of glass crystallization theory with particular reference to glass-ceramics from the MgOAl2O3-SiO2 system. J Material Sci 6:1312–1321

    Google Scholar 

  • Güttler B, Salje E, Putnis A (1989) Structural states of Mg cordierite III: Infrared spectroscopy and the nature of the hexagonalmodulated transition. Phys Chem Minerals 16:365–373

    Google Scholar 

  • Howard CJ (1982) The approximation of asymmetric neutron powder diffraction peaks by sums of gaussians. J Appl Cryst 15:615–620

    Google Scholar 

  • Hummel FA, Reid HW (1951) Thermal expansion of some glasses in the system MgO-Al2O3-SiO2. J Amer Ceram Soc 34:319–321

    Google Scholar 

  • Iiyama T (1955) Existence of indialite solid solutions. Proc imp Acad Japan 31:166–168

    Google Scholar 

  • Jorgensen JS, Faber Jr J, Carpenter JM, Crawford RK, Haumann JR, Hitterman RL, Kleb R, Ostrowski GE, Rotella FJ, Worlton TG (1989) Electronically focussed time-of-flight powder diffractometers at the Intense Pulsed Neutron Source. J Appl Cryst 22:321–333

    Google Scholar 

  • Karkhanavala MD, Hummel FA (1953) The polymorphism of cordierite. J Amer Ceram Soc 36:389–392

    Google Scholar 

  • Kim YH, Mercurio D, Mercurio JP, Frit B (1984) Structural study of a K-substituted synthetic cordierite. Material Res Bull 19:209–217

    Google Scholar 

  • Kitamura M, Hiroi H (1982) Indialite from Unazuki pelitic schist, Japan, and its transition texture to cordierite. Contrib Mineral Petrol 80:110–116

    Google Scholar 

  • Larsen AC, Von Dreele RB (1986) GSAS-Generalized Structure Analysis System. Los Alamos Report LAUR 86–748, Los Alamos National Laboratory USA

    Google Scholar 

  • Lee JD, Pentecost JL (1976) Properties of flux-grown cordierite single crystals. J Amer Ceram Soc 59:183

    Google Scholar 

  • McMillan P, Putnis A, Carpenter MA (1984) A Raman spectroscopic study of Al-Si ordering in synthetic magnesium cordierite. Phys Chem Minerals 10:256–260

    Google Scholar 

  • Meagher EP, Gibbs GV (1977) The polymorphism of cordierite: II. The crystal structure of indialite. Can Mineral 15:43–49

    Google Scholar 

  • Peacor DR (1992) Analytical electron microscopy: x-ray analysis. In: Buseck PR (ed) Minerals and Reactions at the Atomic Scale: Transmission Electron Microscopy, Reviews in Mineralogy v 27. Mineralogical Society of America, Washington DC, pp 113–140

    Google Scholar 

  • Putnis A (1980a) Order-modulated structures and the thermodynamics of cordierite reaction. Nature 287:128–131

    Google Scholar 

  • Putnis A (1980b) The distortion index in anhydrous Mg-cordierite. Contrib Mineral Petrol 74:135–141

    Google Scholar 

  • Putnis A, Angel RJ (1985a) Al,Si ordering in cordierite using “Magic Angle Spinning” NMR II: Models of Al,Si order from NMR data. Phys Chem Minerals 12:217–222

    Google Scholar 

  • Putnis A, Bish DL (1983) The mechanism and kinetics of Al,Si ordering in Mg-cordierite. Am Mineral 68:60–65

    Google Scholar 

  • Putnis A, Fyfe CA, Gobbi GC (1985b) Al, Si ordering in cordierite using “Magic Angle Spinning” NMR I: Si29 spectra of synthetic cordierites. Phys Chem Minerals 12:211–216

    Google Scholar 

  • Putnis A, Holland TJB (1986) Sector trilling in cordierite and equilibrium overstepping in metamorphism. Contrib Mineral Petrol 93:265–272

    Google Scholar 

  • Putnis A, Salje E, Redfern SAT, Fyfe CA, Strobl H (1987) Structural states of Mg-cordierite I: Order Parameters from synchrotron x-ray and NMR data. Phys Chem Minerals 14:446–454

    Google Scholar 

  • Rankin GA, Merwin HE (1918) The ternary system MgO-Al2O3SiO2. Am J Sci 45:301–325

    Google Scholar 

  • Roy R (1959) Silica O, a new common form of silica. Z Krist 111:185–189

    Google Scholar 

  • Salje E (1987) Structural state of Mg-cordierite II: Landau Theory. Phys Chem Minerals 14:455–460

    Google Scholar 

  • Schreyer W, Schairer JF (1961a) Compositions and structural states of anhydrous Mg-cordierites: A re-investigation of the central part of the system MgO-Al2O3-SiO2. J Petrol 2:324–406

    Google Scholar 

  • Schreyer W, Schairer JF (1961b) Metastable solid solutions with quartz-type structures on the join SiO2-MgAl2O4. Z Krist 116:60–82

    Google Scholar 

  • Skinner BJ, Evans HT (1960) Crystal chemistry of β-spodumene solid solutions on the join Li2O-Al2O3-SiO2. Am J Sci Bradley Vol 312–324

  • Thompson P, Cox DE, Hastings JB (1987) Rietveld refinement of Debye-Scherrer synchrotron x-ray data from Al2O3. J Appl Cryst 20:79–83

    Google Scholar 

  • Von Dreele RB, Jorgensen JD, Windsor CG (1982) Rietveld refinement with spallation neutron powder diffraction data. J Appl Cryst 15:581–589

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwartz, K.B., Leong, D.B. & McConville, R.L. Structural chemistry of synthetic cordierite: Evidence for solid solutions and disordered compositional domains in Bi-flux-grown Mg-cordierites. Phys Chem Minerals 20, 563–574 (1994). https://doi.org/10.1007/BF00211852

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00211852

Keywords

Navigation