Skip to main content
Log in

Explore of warpage origination in WLP and processing influence factors by experiment and theoretical modeling

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Thick Cu films are widely used in wafer level packaging, and the stress evolution during subsequent thermal cycling as well as the induced wafer warpage may make a significant impact on product yielding and needs to be investigated. The stress evolution behavior of 5 μm thick as-electroplated Cu films during thermal cycling are in situ investigated by wafer warpage measurement. It is revealed by microstructure analyses that the grain growth during thermal cycling is ignorable in current work, but dramatic atomic diffusion has occurred, suggesting the deformation mechanism is dominated by diffusional creep. As the dominant diffusion mechanism differs at different temperatures, an equivalent diffusional energy that has a linearly correlation to temperature is proposed, and consequently a stress evolution model based on the equivalent diffusional energy is deduced. Compared with conventional work, the current model has fewer fitted parameters, and shows better agreement with the experiment results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K.N. Tu, J. Appl. Phys. 94, 5451 (2003)

    Article  Google Scholar 

  2. C. Witt, R. Rosenberg, G. Bonilla et al., in Stress-Induced Phenomena in Metallization, ed. by P.S. Ho, et al. (American Institute of Physics, Melville, 2009)

    Google Scholar 

  3. R. Mehta, S. Chugh, Z.H. Chen, Nano Lett. 15, 2024 (2015)

    Article  Google Scholar 

  4. M.D. Thouless, J. Gupta, J.M.E. Harper, J. Mater. Res. 8, 1845 (1993)

    Article  Google Scholar 

  5. E. Suhir, Appl. Mech. Rev. 62, 040801 (2009)

    Article  Google Scholar 

  6. E. Suhir, Microelectron. Reliab. 54, 972 (2014)

    Article  Google Scholar 

  7. E. Suhir, J. Mater Sci.-Mater. El 27, 4816 (2016)

    Article  Google Scholar 

  8. E. Suhir, R. Ghaffarian, J. Nicolics, J. Mater. Sci.-Mater. El 27, 570 (2016)

    Article  Google Scholar 

  9. R. Bruening, A. Sibley, T. Sharma et al., Thin Solid Films 565, 136 (2014)

    Article  Google Scholar 

  10. D.R. Economy, M.J. Cordill, E.A. Payzant et al., Mat. Sci. Eng. a-Struct. 648, 289 (2015)

    Article  Google Scholar 

  11. Y. Temiz, C. Guiducci, Y. Leblebici, IEEE T. Comp Pack Man 3, 1458 (2013)

    Google Scholar 

  12. C.E. Murray, J. Jordan-Sweet, E.T. Ryan et al., Appl. Phys. Lett. 101, 231906 (2012)

    Article  Google Scholar 

  13. C. Zhu, W. Ning, G. Xu et al., Mater. Sci. Semicond. Process. 27, 819 (2014)

    Article  Google Scholar 

  14. P.A. Flinn, J. Mater. Res. 6, 1498 (1991)

    Article  Google Scholar 

  15. D. Chocyk, A. Proszynski, G. Gladyszewski, Microelectron. Eng. 85, 2179 (2008)

    Article  Google Scholar 

  16. R. Huang, D. Gan, P.S. Ho, J. Appl. Phys. 97, 103532 (2005). doi:10.1063/1.1904721

    Article  Google Scholar 

  17. Y.L. Shen, U. Ramamurty, J. Appl. Phys. 93, 1806 (2003)

    Article  Google Scholar 

  18. J.R. Greer, D.C. Jang, X.W. Gu, JOM 64, 1241 (2012)

    Article  Google Scholar 

  19. S.J. Hwang, Y.C. Joo, J. Koike, Thin Solid Films 516, 7588 (2008)

    Article  Google Scholar 

  20. T.K. Bhandakkar, Y. Wei, H. Gao, Math. Mech. Solids 14, 179 (2009)

    Article  Google Scholar 

  21. S.-K. Ryu, T. Jiang, K.H. Lu et al., Appl. Phys. Lett. 100, 041901 (2012)

    Article  Google Scholar 

  22. C.S. Zhu, W.G. Ning, G.W. Xu et al., J. Electron. Mater. 43, 3255 (2014)

    Article  Google Scholar 

  23. S.R. Oh, K. Yao, C.L. Chow et al., Thin Solid Films 519, 1441 (2010)

    Article  Google Scholar 

  24. D.K. Shin, J.J. Lee, IEEE T Comp Pack Man 4, 248 (2014)

    Google Scholar 

  25. A.G. Evans, J.W. Hutchinson, Acta Metall. Mater. 43, 2507 (1995)

    Article  Google Scholar 

  26. G.G. Stoney, in Proceedings of the Royal Society of London Series A-Containing Papers of a Mathematical and Physical Character, vol. 82 (1909), p. 172

  27. M.F. Doerner, W.D. Nix, Crit. Rev. Solid State 14, 225 (1988)

    Article  Google Scholar 

  28. D. Weiss, H. Gao, E. Arzt, Acta Mater. 49, 2395 (2001)

    Article  Google Scholar 

  29. D.W. Gan, P.S. Ho, R. Huang et al., J. Appl. Phys. 97, 103531 (2005). doi:10.1063/1.1904720

    Article  Google Scholar 

  30. S.J. Hwang, Y.C. Joo, J. Koike, Thin Films Stresses Mech. Prop. X 795, 205 (2004)

    Article  Google Scholar 

  31. S.P. Baker, R.M. Keller-Flaig, J.B. Shu, Acta Mater. 51, 3019 (2003)

    Article  Google Scholar 

  32. HJ Frost, MF Ashby, Deformation-Mechanisms Maps (Pergamon, Oxford, 1982)

  33. D. Gupta, C.K. Hu, K.L. Lee, Defect Diffus. Forum 143, 1397 (1997)

    Article  Google Scholar 

  34. T. Surholt, C. Herzig, Acta Mater. 45, 3817 (1997)

    Article  Google Scholar 

  35. R.P.S. Thakur, R. Singh, Appl. Phys. Lett. 64, 327 (1994)

    Article  Google Scholar 

  36. P. Shewmon, The Minerals, Metals & Materials Society, Diffusion in Solids, 2nd edn (Retroactive Coverage, USA, 1989), p. 246

  37. R.P. Vinci, E.M. Zielinski, J.C. Bravman, Thin Solid Films 262, 142 (1995)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (Grant No. NSFC61574154) and Natural Science Foundation of Shanghai (No. 13ZR1447300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Cheng, G., Xu, G. et al. Explore of warpage origination in WLP and processing influence factors by experiment and theoretical modeling. J Mater Sci: Mater Electron 27, 11548–11555 (2016). https://doi.org/10.1007/s10854-016-5285-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5285-8

Keywords

Navigation