Skip to main content
Log in

A high sensitive and low detection limit of formaldehyde gas sensor based on hierarchical flower-like CuO nanostructure fabricated by sol–gel method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The hierarchical flower-like CuO nanostructure was synthesized by a facile sol–gel method without template. Indirectly-heated sensors are fabricated by coating the sol–gel on ceramic tubes with signal electrodes and subsequent annealing. The obtained nanostructures are analyzed by X-ray diffraction and scanning electron microscopy. Their gas sensing performances were investigated. The results indicated that the sensor based on hierarchical flower-like CuO exhibited excellent sensing properties towards ethanol, formaldehyde, acetone and dimethylbenzene. The sensor based on the CuO exhibited the optimal gas sensing performance, giving a ppb-level detection limit and a high response (Rg/Ra) of 1.378 to 50 ppb formaldehyde at 250 °C. The response and recovery time of the flower-like CuO nanostructure sensor are 11.9 and 8.4 s, respectively. The significantly enhanced sensing properties to formaldehyde could be attributed to the changes in crystallite size and specific surface area. The results indicate that the hierarchical flower-like CuO nanostructure gas sensor can be a simple and useful platform for formaldehyde and other volatile organic compounds sensing application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N. Yamazoe, Toward innovations of gas sensor technology. Sens. Actuators B 108, 2–14 (2005)

    Article  Google Scholar 

  2. R. Ramamoorthy, P.K. Dutta, S.A. Akbar, Oxygen sensors: materials, methods, designs and applications. J. Mater. Sci. 38, 4271–4282 (2003)

    Article  Google Scholar 

  3. J. Kong, N.R. Franklin, C.W. Zhou, M.G. Chapline, S. Peng, K.J. Cho, H.J. Dai, Nanotube molecular wires as chemical sensors. Science 287, 622–625 (2000)

    Article  Google Scholar 

  4. Y. Huiying, T. Xianqing, S. Jie, M. Fengguo, Enhanced sensing properties of CuO nanosheets for volatile organic compounds detection. J. Mater. Sci. Mater. Electron. 26, 280–287 (2015)

    Article  Google Scholar 

  5. A.B. Djurisic, Y.H. Leung, Optical properties of ZnO nanostructures. Small 2, 944–961 (2006)

    Article  Google Scholar 

  6. C.O. Park, S.A. Akbar, Ceramics for chemical sensing. J. Mater. Sci. 38, 4611–4637 (2003)

    Article  Google Scholar 

  7. P.D. Yang, H.Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R.R. He, H.J. Choi, Controlled growth of ZnO nanowires and their optical properties. Adv. Funct. Mater. 12, 323–331 (2002)

    Article  Google Scholar 

  8. J. Zhang, J. Guo, H.Y. Xu, B.Q. Cao, Reactive-template fabrication of porous SnO2 nanotubes and their remarkable gas-sensing performance. ACS Appl. Mater. Interfaces 5, 7893–7898 (2013)

    Article  Google Scholar 

  9. H. A. Khorami, M. Keyanpour-Rad, M. R. Vaezi, Synthesis of SnO2/ZnO composite nanofibers by electrospinning method and study of its ethanol sensing properties. Appl. Surf. Sci. 257, 7988–7992 (2011)

    Article  Google Scholar 

  10. A. Qureshi, A. Mergen, A. Altindal, Preparation and characterization of Li and Ti codoped NiO nanocomposites for gas sensors applications. Sens. Actuators B 135, 537–540 (2009)

    Article  Google Scholar 

  11. W.C. Wang, Y.T. Tian, X.J. Li, X.C. Wang, H. He, Y.R. Xu, C. He, Enhanced ethanol sensing properties of Zn-doped SnO2 porous hollow microspheres. Appl. Surf. Sci. 261, 890–895 (2012)

    Article  Google Scholar 

  12. A.M. Taurino, S. Capone, P. Siciliano, T. Toccoli, A. Boschetti, L. Guerini, S. Iannotta, Nanostructured TiO2 thin films prepared by supersonic beams and their application in a sensor array for the discrimination of VOC. Sens. Actuators B 92, 292–302 (2003)

    Article  Google Scholar 

  13. W. Wu, Y.H. Chen, H.S. Tao, N.H. Tong, W.M. Liu, Interacting Dirac fermions on honeycomb lattice. Phys. Rev. B 82, 245102 (2010)

    Article  Google Scholar 

  14. A.-C. Ji, X.C. Xie, W.M. Liu, Quantum magnetic dynamics of polarized light in arrays of microcavities. Phys. Rev. Lett. 99, 183602 (2007)

    Article  Google Scholar 

  15. C.O. Park, S.A. Akbar, W. Weppner, Ceramic electrolytes and electrochemical sensors. J. Mater. Sci. 38, 4639–4660 (2003)

    Article  Google Scholar 

  16. A.K. Prasad, P.I. Gouma, MoO3 and WO3 based thin film conductimetric sensors for automotive applications. J. Mater. Sci. 38, 4347–4352 (2003)

    Article  Google Scholar 

  17. X.J. Feng, K. Shankar, O.K. Varghese, M. Paulose, T.J. Latempa, C.A. Grimes, Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications. Nano Lett. 8, 3781–3786 (2008)

    Article  Google Scholar 

  18. Y. Ruoxue, G. Daniel, Y. Peidong, Nanowire photonics. Nat. Photonics 3, 569–576 (2009)

    Article  Google Scholar 

  19. W. Peng, Z. Xinhong, L. Baojun, ZnO-coated CuO nanowire arrays: fabrications, optoelectronic properties, and photovoltaic applications. Opt. Express 19, 11271–11279 (2011)

    Article  Google Scholar 

  20. N.D. Hoa, N.V. Quy, H. Jung, D. Kim, H. Kim, S.K. Hong, Synthesis of porous CuO nanowires and its application to hydrogen detection. Sens. Actuators B 146, 266–272 (2010)

    Article  Google Scholar 

  21. S. Iqbal, R.K. Bedi, Influence of pH on the synthesis and characterization of CuO powder for thick film room-temperature NH3 gas sensor. J. Mater. Sci. 46, 5568–5580 (2011)

    Article  Google Scholar 

  22. J.T. Zhang, J.F. Liu, Q. Peng, X. Wang, Y.D. Li, Nearly monodisperse Cu2O and CuO nanospheres: preparation and application for sensitive gas sensors. Chem. Mater. 18, 867–871 (2006)

    Article  Google Scholar 

  23. J.C. Park, J. Kim, H. Kwon, H. Song, Gram-scale synthesis of Cu2O nanocubes and subsequent oxidation to CuO hollow nanostructures for lithium-ion battery anode materials. Adv. Mater. 21, 803–807 (2009)

    Article  Google Scholar 

  24. S. Steinhauer, E. Brunet, T. Maier, G.C. Mutinati, A. Kock, Suspended CuO nanowires for ppb level H2S sensing in dry and humid atmosphere. Sens. Actuators B 186, 550–556 (2013)

    Article  Google Scholar 

  25. S. Steinhauer, E. Brunet, T. Maier, G.C. Mutinati, A. Kock, O. Freudenberg, C. Gspan, W. Grogger, A. Neuhold, R. Resel, Gas sensing properties of novel CuO nanowire devices. Sens. Actuators B 187, 50–57 (2013)

    Article  Google Scholar 

  26. M. Mashock, K.H. Yu, S.M. Cui, S. Mao, G.H. Lu, J.H. Chen, Modulating gas sensing properties of CuO nanowires through creation of discrete nanosized p–n junctions on their surfaces, ACS Appl. Mater. Inter. 4, 4192–4199 (2012)

    Article  Google Scholar 

  27. H.W. Che, A.F. Liu, J.X. Hou, J.B. Mu, Y.M. Bai, S.F. Zhao, X.L. Zhang, H.J. He, Solvothermal synthesis of hierarchical Co3O4 flower-like microspheres for superior ethanol gas sensing properties. J. Mater. Sci. Mater. Electron. 25, 3209–3218 (2014)

    Article  Google Scholar 

  28. A. Aslani, V. Oroojpour, CO gas sensing of CuO nanostructures, synthesized by an assisted solvothermal wet chemical route. Phys. B 406, 144–149 (2011)

    Article  Google Scholar 

  29. G. Sakai, N. Matsunaga, K. Shimanoe, N. Yamazoe, Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor. Sens. Actuators B 80, 125–131 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 61204106) and Provincial Natural Science Foundation of Gansu (No. 1107RJZA090).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai-rong Li or Su Liu.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work. There is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, H., Li, Hr., Wang, F. et al. A high sensitive and low detection limit of formaldehyde gas sensor based on hierarchical flower-like CuO nanostructure fabricated by sol–gel method. J Mater Sci: Mater Electron 27, 6766–6772 (2016). https://doi.org/10.1007/s10854-016-4626-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4626-y

Keywords

Navigation