Skip to main content
Log in

Selective ethanol gas sensing performance of flower-shaped CuO composed of thin nanoplates

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

A Correction to this article was published on 03 July 2021

This article has been updated

Abstract

Ethanol is one of the volatile organic compounds as well as organic pollutants that is essentially to be monitored using high response sensors. Semiconducting metal oxide nanostructures can be the potential sensor material for high-performance ethanol sensing application. Herein, we present the fabrication and characterization of highly sensitive and selective ethanol gas sensor based on flower-shaped CuO composed of thin nanoplates synthesized by facile hydrothermal process. The prepared flower-shaped CuO was examined by various techniques viz FESEM, XRD, EDS, elemental mapping, HRTEM, SAED, UV-visible spectroscopy, FTIR spectroscopy, and Raman spectroscopy, which confirmed the high-density growth, monoclinic crystal structure, and optical band gap of ~2.5 eV. The fabricated resistive sensor device based on flower-shaped CuO, at optimum experimental conditions, i.e., 250 °C, 100 ppm ethanol concentration, exhibited a high sensing response of 241%, while, at 10 ppm of ethanol concentration, the response was observed to be 5%. The transient responses as well as the stability of the sensor were analyzed and reported here. The selectivity of CuO sensor device was studied for NO2, CO2, CO, and CH4 gases and remarkably it was seen that the developed gas sensor devices demonstrated outstanding selectivity toward ethanol gas. Finally, the gas response mechanism of the fabricated resistive ethanol gas sensor was explained on the basis of the ionosorption model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Change history

References

  1. R. Kumar, O. Al-Dossary, G. Kumar, A. Umar, Zinc oxide nanostructures for NO2 gas sensor applications: a review. Nano Micro Lett. 7, 97–120 (2015)

    Article  CAS  Google Scholar 

  2. R. Feng, Y. Xia, Synthesis of hierarchical hetero-junction composite and gas detection performance in asphalt road. J. Nanoelectron. Optoelectron. 15, 516–522 (2020)

    Article  CAS  Google Scholar 

  3. A. Umar, M. Alduraibi, O. Al-Dossary, NOx gas sensing properties of Fe-doped ZnO nanoparticles. Sci. Adv. Mater. 12, 908–914 (2020)

    Article  CAS  Google Scholar 

  4. L. Qi, Y. Pan, A novel sensor apply in detection of indoor Air. Sci. Adv. Mater. 12, 282–288 (2020)

    Article  CAS  Google Scholar 

  5. Q. Wei, L. Liu, C. Wu, A novel net like structure sensor and gas detection performance in tunnel construction. J. Nanoelectron. Optoelectron. 15, 54–58 (2020)

    Article  CAS  Google Scholar 

  6. A. Umar, M. Alduraibi, O. Al-Dossary, Development of ethanol gas sensor using α-Fe2O3 nanocubes synthesized by hydrothermal process. J. Nanoelectron. Optoelectron. 15, 59–64 (2020)

    Article  CAS  Google Scholar 

  7. J. Forsyth, S. Hull, The effect of hydrostatic pressure on the ambient temperature structure of CuO. J. Phys 3(28), 5257 (1991)

    CAS  Google Scholar 

  8. C.H. Kuo, C.H. Chen, M.H. Huang, Seed-mediated synthesis of monodispersed Cu2O nanocubes with five different size ranges from 40 to 420 nm. Adv. Funct. Mater. 17(18), 3773–3780 (2007)

    Article  CAS  Google Scholar 

  9. X. Zhang, G. Zhang, S. Wang, S. Li, S. Jiao, Porous CuO microsphere architectures as high-performance cathode materials for aluminum-ion batteries. J. Mater. Chem. A 6(7), 3084–3090 (2018)

    Article  CAS  Google Scholar 

  10. A. Musa, T. Akomolafe, M. Carter, Production of cuprous oxide, a solar cell material, by thermal oxidation and a study of its physical and electrical properties. Sol. Energy Mater. Sol. Cells 51(3–4), 305–316 (1998)

    Article  CAS  Google Scholar 

  11. A. Rydosz, The use of copper oxide thin films in gas-sensing applications. Coatings 8(12), 425 (2018)

    Article  CAS  Google Scholar 

  12. N. Baghdadi, A. Saeed, A.R. Ansari, A.H. Hammad, A. Afify, N. Salah, Controlled nanostructuring via aluminum doping in CuO nanosheets for enhanced thermoelectric performance. J. Alloys Compds. 869, 159370 (2021)

    Article  CAS  Google Scholar 

  13. H. Wang, J.Z. Xu, J.J. Zhu, H.Y. Chen, Preparation of CuO nanoparticles by microwave irradiation. J. Cryst. Growth 244(1), 88–94 (2002)

    Article  CAS  Google Scholar 

  14. C. Xu, Y. Liu, G. Xu, G. Wang, Preparation and characterization of CuO nanorods by thermal decomposition of CuC2O4 precursor. Mater. Res. Bull. 37(14), 2365–2372 (2002)

    Article  CAS  Google Scholar 

  15. W. Zhu, W. Zhu, W. Huangfu, J. Chi, L. Xu, A Novel CuO flower like nanomaterials and its fault detection performance in power cable. J. Nanoelectron. Optoelectron. 15, 1146–1150 (2020)

    Google Scholar 

  16. B.J. Hansen, N. Kouklin, G. Lu, I.K. Lin, J. Chen, X. Zhang, Transport, analyte detection, and opto-electronic response of p-type CuO nanowires. J. Phys. Chem. C 114(6), 2440–2447 (2010)

    Article  CAS  Google Scholar 

  17. F. Zhang, A. Zhu, Y. Luo, Y. Tian, J. Yang, Y. Qin, CuO nanoplates for sensitive and selective determination of H2S with high recovery ability. J. Phys. Chem. C 114(45), 19214–19219 (2010)

    Article  CAS  Google Scholar 

  18. X. Gou, G. Wang, J. Yang, J. Park, D. Wexler, Chemical synthesis, characterisation and gas sensing performance of copper oxide nanoribbons. J. Mater. Chem. 18(9), 965–969 (2008)

    Article  CAS  Google Scholar 

  19. Y. Zhang, X. He, J. Li, H. Zhang, X. Gao, Gas-sensing properties of hollow and hierarchical copper oxide microspheres. Sens. Actuators B 128(1), 293–298 (2007)

    Article  CAS  Google Scholar 

  20. P. Patil, U.T. Nakate, Y.T. Nakate, R.C. Ambare, Acetaldehyde sensing properties using ultrafine CuO nanoparticles. Mater. Sci. Semicond. Process. 101, 76–81 (2019)

    Article  CAS  Google Scholar 

  21. C. Yang, F. Xiao, J. Wang, X. Su, 3D flower- and 2D sheet-like CuO nanostructures: microwave-assisted synthesis and application in gas sensors. Sens. Actuat. B 207, 177 (2015)

    Article  CAS  Google Scholar 

  22. J. Huang, Y. Dai, C. Gu, Y. Sun, J. Liu, Preparation of porous flower-like CuO/ZnO nanostructures and analysis of their gas-sensing property. J. Alloys Compds. 575, 115 (2013)

    Article  CAS  Google Scholar 

  23. M. Zhou, X. Chen, L. Zhang, W. Zeng, High performance novel gas sensor device for site environmental protection using Ti0.5Sn0.5O2 nanomaterials. J. Nanoelectron. Optoelectron. 15, 1423–1428 (2020)

    Article  Google Scholar 

  24. H.R. Kim, A. Haensch, I.D. Kim, N. Barsan, U. Weimar, J.H. Lee, The role of NiO doping in reducing the impact of humidity on the performance of SnO2-based gas sensors: synthesis strategies, and phenomenological and spectroscopic studies. Adv. Funct. Mater. 21(23), 4456–4463 (2011)

    Article  CAS  Google Scholar 

  25. H.-R. Kim, K.I. Choi, K.M. Kim, I.D. Kim, G. Cao, J.H. Lee, Ultra-fast responding and recovering C2H5OH sensors using SnO2 hollow spheres prepared and activated by Ni templates. Chem. Commun. 46(28), 5061–5063 (2010)

    Article  CAS  Google Scholar 

  26. M. Hübner, C.E. Simion, A.T. Stănoiu, S. Pokhrel, N. Bârsan, U. Weimar, Influence of humidity on CO sensing with p-type CuO thick film gas sensors. Sens. Actuators B 153(2), 347–353 (2011)

    Article  CAS  Google Scholar 

  27. A. Umar, H.Y. Ammar, R. Kumar, A.A. Ibrahim, M.S. AlAssiri, Square disks-based crossed architectures of SnO2 for ethanol gas sensing applications- an experimental and theoretical investigation. Sens. Actuators B 304, 127 (2020)

    Article  CAS  Google Scholar 

  28. G. Korotcenkov, Metal oxides for solid-state gas sensors: what determines our choice? Mater. Sci. Eng. B 139(1), 1–23 (2007)

    Article  CAS  Google Scholar 

  29. A.M. Azad, S.A. Akbar, S.G. Mhaisalkar, L.D. Birkefeld, K.S. Goto, Solid state gas sensors: a review. J. Electrochem. Soc. 139, 3690 (1997)

    Article  Google Scholar 

  30. M.J. Madou, S.R. Morrison, Chemical Sensing with Solid State Devices (Elsevier, Amsterdam, 2012).

    Google Scholar 

  31. I. Jimenez, J. Arbiol, G. Dezanneau, A. Cornet, J.R. Morante, Crystalline structure, defects and gas sensor response to NO2 and H2S of tungsten trioxide nanopowders. Sens. Actuators B 93(1–3), 475–485 (2003)

    Article  CAS  Google Scholar 

  32. U.T. Nakate, R. Ahmad, P. Patil, Y.T. Yu, Y.-B. Hahn, Ultra thin NiO nanoplates for high performance hydrogen gas sensor device. Appl. Surf. Sci. 506, 144971 (2020)

    Article  CAS  Google Scholar 

  33. S.P. Choudhury, N. Kumari, A. Bhattacharjee, Enhanced surface activity of SnO2 thin film verified by LM algorithm. Superlattices Microstruct. 92, 24–36 (2016)

    Article  CAS  Google Scholar 

  34. S.H. Kim, A. Umar, S.-W. Hwang, Rose-like CuO nanostructures for highly sensitive glucose chemical sensor application. Ceram. Int. 41(8), 9468–9475 (2015)

    Article  CAS  Google Scholar 

  35. A. Umar, J.H. Lee, R. Kumar, O. Al-Dossary, A.A. Ibrahim, S. Baskoutas, Development of highly sensitive and selective ethanol sensor based on lance-shaped CuO nanostructures. Mater. Des. 105, 16–24 (2016)

    Article  CAS  Google Scholar 

  36. L. Shi, C. Fan, X. Fu, S. Yu, G. Qian, Z. Wang, Carbonate-assisted hydrothermal synthesis of porous hierarchical Co3O4/CuO composites as high capacity anodes for lithium-ion batteries. Electrochim Acta 197, 23–31 (2016)

    Article  CAS  Google Scholar 

  37. M. Rokhmat, E. Wibowo, Sutisna, Khairurrijal, M. Abdullah, Performance improvement of TiO2/CuO solar cell by growing copper particle using fix current electroplating method. Procedia Eng. 170, 72–77 (2017)

    Article  CAS  Google Scholar 

  38. K.Y. Hwa, P. Karuppaiah, N.S.K. Gowthaman, V. Balakumar, S. Shankar, H.N. Lim, Ultrasonic synthesis of CuO nanoflakes: a robust electrochemical scaffold for the sensitive detection of phenolic hazard in water and pharmaceutical samples. Ultrasonics Sonochem. 58, 1046 (2019)

    Article  CAS  Google Scholar 

  39. P.K. Raul, S. Senapati, A.K. Sahoo, I.M. Umlong, R.R. Devi, A.J. Thakur, V. Veer, CuO nanorods: a potential and efficient adsorbent in water purification. RSC Adv. 4(76), 40580–40587 (2014)

    Article  CAS  Google Scholar 

  40. K.R. Reddy, Green synthesis, morphological and optical studies of CuO nanoparticles. J. Mol Struct 1150, 553–557 (2017)

    Article  CAS  Google Scholar 

  41. C. Yang, X. Su, F. Xiao, J. Jian, J. Wang, Gas sensing properties of CuO nanorods synthesized by a microwave-assisted hydrothermal method. Sens. Actuators B 158(1), 299–303 (2011)

    Article  CAS  Google Scholar 

  42. C. Han, X. Chen, D. Liu, P. Zhou, S. Zhao, H. Bi, D. Meng, D. Wei, Y. Shen, Fabrication of shrub-like CuO porous films by a top-down method for high-performance ethanol gas sensor. Vacuum 157, 332–339 (2018)

    Article  CAS  Google Scholar 

  43. H. Gong, J.Q. Hu, J.H. Wang, C.H. Ong, F.R. Zhu, Nano-crystalline Cu-doped ZnO thin film gas sensor for CO. Sens. Actuators B 115(1), 247–251 (2006)

    Article  CAS  Google Scholar 

  44. K. Arshak, I. Gaidan, Development of a novel gas sensor based on oxide thick films. Mater. Sci. Eng B 118(1–3), 44–49 (2005)

    Article  CAS  Google Scholar 

  45. C. Prajapati, S. Pandey, P. Sahay, Sensing of LPG with nanostructured zinc oxide thin films grown by spray pyrolysis technique. Physica B 406(13), 2684–2688 (2011)

    Article  CAS  Google Scholar 

  46. A. Gurlo, Interplay between O2 and SnO2: oxygen ionosorption and spectroscopic evidence for adsorbed oxygen. ChemPhysChem 7(10), 2041–2052 (2006)

    Article  CAS  Google Scholar 

  47. T. Jinkawa, G. Sakai, J. Tamaki, N. Miura, N. Yamazoe, Relationship between ethanol gas sensitivity and surface catalytic property of tin oxide sensors modified with acidic or basic oxides. J. Mol. Catal. A 155(1–2), 193–200 (2000)

    Article  CAS  Google Scholar 

  48. H.-J. Kim, J.-H. Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens. Actuators B 192, 607–627 (2014)

    Article  CAS  Google Scholar 

  49. Y.-H. Choi, D.H. Kim, S.H. Hong, K.S. Hong, H2 and C2H5OH sensing characteristics of mesoporous p-type CuO films prepared via a novel precursor-based ink solution route. Sens. Actuators B 178, 395–403 (2013)

    Article  CAS  Google Scholar 

  50. A.S. Zoolfakar, M.Z. Ahmad, R.A. Rani, J.Z. Ou, S. Balendhran, S. Zhuiykov, K. Latham, W. Wlodarski, K.K. Zadeh, Nanostructured copper oxides as ethanol vapour sensors. Sens. Actuators B 185, 620–627 (2013)

    Article  CAS  Google Scholar 

  51. A. Ghosh, A. Maity, R. Banerjee, S.B. Majumder, Volatile organic compound sensing using copper oxide thin films: addressing the cross sensitivity issue. J. Alloys Compd. 692, 108–118 (2017)

    Article  CAS  Google Scholar 

  52. A. Umar, J.H. Lee, R. Kumar, O. Al-Dossary, Synthesis and characterization of CuO nanodisks for high-sensitive and selective ethanol gas sensor applications. J. Nanosci. Nanotechnol. 17(2), 1455–1459 (2017)

    Article  CAS  Google Scholar 

  53. P. Raksa, A. Gardchareon, T. Chairuangsri, P. Mangkorntong, N. Mangkorntong, S. Choopun, Ethanol sensing properties of CuO nanowires prepared by an oxidation reaction. Ceram. Int. 35(2), 649–652 (2009)

    Article  CAS  Google Scholar 

  54. Y. Sang, G. Song, Z. Gao, X. Zhang, T. Wang, Y. Li, L. Zhang, Y. Fu, L. Guo, Sea urchin-like CuO particles prepared using Cu3(PO4)2 flowers as precursor for high-performance ethanol sensing. Nanotechnology 31(16), 165504 (2020)

    Article  CAS  Google Scholar 

  55. L. Liao, Z. Zhang, B. Yan, Z. Zheng, Q.L. Bao, T. Wu, C.M. Li, Z.X. Shen, J.X. Zhang, H. Gong, Multifunctional CuO nanowire devices: p-type field effect transistors and CO gas sensors. Nanotechnology 20(8), 085203 (2009)

    Article  CAS  Google Scholar 

  56. H.T. Hsueh, S.J. Chang, F.Y. Hung, W.Y. Weng, C.L. Hsu, T.J. Hsueh, S.S. Lin, B.T. Dai, Ethanol gas sensor of crabwise CuO nanowires prepared on glass substrate. J. Electrochem. Soc. 158(4), J106 (2011)

    Article  CAS  Google Scholar 

  57. C. Wang, X.Q. Fu, X.Y. Xue, Y.G. Wang, T.H. Wang, Surface accumulation conduction controlled sensing characteristic of p-type CuO nanorods induced by oxygen adsorption. Nanotechnology 18(14), 145506 (2007)

    Article  CAS  Google Scholar 

  58. D. Barreca, E. Comini, A. Gasparotto, C. Maccato, C. Sada, G. Sberveglieri, E. Tondello, Chemical vapor deposition of copper oxide films and entangled quasi-1D nanoarchitectures as innovative gas sensors. Sens. Actuators B 141(1), 270–275 (2009)

    Article  CAS  Google Scholar 

  59. A. Umar, A.A. Ibrahim, U.T. Nakate, H. Albargi, M.A. Alsaiari, F. Ahmed, F.A. Alharthi, A.A. Alghamdi, N. Al-Zaqri, CuO nanoplates as potential scaffolds for gas sensing applications. Sens. Actuators B 250, 24–31 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge the support of the Deputy for Research and Innovation-Ministry of Education, Kingdom of Saudi Arabia for the research through a Grant (NU/IFC/INT/01/004) under the institutional funding committee at Najran University, Kingdom of Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

AU, AAI, HA, UTN, and SPC: experiments conduction, data analyzation, original drafting, and writing—review and editing; AU, TA, HA, MAA, and SB: visualization, revision, and validation.

Corresponding author

Correspondence to Ahmad Umar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umar, A., Ibrahim, A.A., Algadi, H. et al. Selective ethanol gas sensing performance of flower-shaped CuO composed of thin nanoplates. J Mater Sci: Mater Electron 32, 18565–18579 (2021). https://doi.org/10.1007/s10854-021-06249-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06249-y

Navigation