Skip to main content

Advertisement

Log in

Facile synthesis of nickel doped walnut-like MnO2 nanoflowers and their application in supercapacitor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The hierarchical walnut-like nickel-doped MnO2 nanostructure was successfully synthesized via a simple hydrothermal method without using any template or surfactant. The samples are characterized by XRD, EDS, SEM, and TEM for its composition, structure/morphology. The results show that the novel walnut-like MnO2 nanoflowers are composed of many interleaving thin nanosheets. Meanwhile, the samples present ideal electrochemical behavior, such as high specific capacitance (153.6 F g−1 at 1 A g−1) and outstanding cycling stability (the capacitance even shows a retention of 103 % after 1000 cycles). These remarkable and excellent results prove the walnut-like MnO2 nanomaterial has a great potential of application in the future energy storage device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J.R. Miller, P. Simon, Science 321, 651–652 (2008)

    Article  Google Scholar 

  2. M. Armand, J.M. Tarascon, Nature 451, 652–657 (2008)

    Article  Google Scholar 

  3. M.J. Jing, H.S. Hou, C.E. Banks, Y.C. Yang, Y. Zhang, X.B. Ji, ACS Appl. Mater. Interfaces 7, 22741–22744 (2015)

    Article  Google Scholar 

  4. W. Chaikittisilp, M. Hu, H. Wang, H.S. Huang, T. Fujita, K.C. Wu, L.C. Chen, Y. Yamauchi, K. Ariga, Chem. Commun. 48, 7259–7261 (2012)

    Article  Google Scholar 

  5. L. Huang, J.W. Xiang, W. Zhang, C.J. Chen, H.H. Xu, Y.H. Huang, J. Mater. Chem. A 3, 22081–22087 (2015)

    Article  Google Scholar 

  6. Y.J. Yang, S.B. Li, L.N. Zhang, J.H. Xu, W.Y. Yang, Y.D. Jiang, ACS Appl. Mater. Interfaces 5, 4350–4355 (2013)

    Article  Google Scholar 

  7. M. Hu, S. Ishihara, Y. Yamauchi, Angew. Chem. Int. Ed. 52, 1235–1239 (2013)

    Article  Google Scholar 

  8. M.J. Zhi, C.C. Xiang, J.T. Li, M. Li, N.Q. Wu, Nanoscale 5, 72–88 (2013)

    Article  Google Scholar 

  9. J.P. Liu, J. Jiang, C.W. Cheng, H.X. Li, J.X. Zhang, H. Gong, H.J. Fan, Adv. Mater. 23, 2076–2081 (2011)

    Article  Google Scholar 

  10. X. Su, L. Yu, G. Cheng, H. Zhang, M. Sun, L. Zhang, J. Zhang, Appl. Energy 134, 439–445 (2014)

    Article  Google Scholar 

  11. A. Boisset, L. Athouel, J. Jacquemin, P. Porion, T. Brousse, M. Anouti, J. Phys. Chem. C 117, 7408–7422 (2013)

    Article  Google Scholar 

  12. Y. Zhao, P. Jiang, Colloids Surf. A Physicochem Eng. Asp. 444, 232–239 (2014)

    Article  Google Scholar 

  13. W. Deng, X. Ji, Q. Chen, C.E. Banks, RSC Adv. 1, 1171–1178 (2011)

    Article  Google Scholar 

  14. L.L. Peng, X. Peng, B.R. Liu, C.Z. Wu, Y. Xie, G.H. Yu, Nano Lett. 13, 2151–2157 (2013)

    Article  Google Scholar 

  15. D.D. Zhu, Y.D. Wang, G.L. Yuan, H. Xia, Chem. Commun. 50, 2876–2878 (2014)

    Article  Google Scholar 

  16. X. Lu, M. Yu, G. Wang, T. Zhai, S. Xie, Y. Ling, Y. Tong, Y. Li, Adv. Mater. 25, 267–272 (2013)

    Article  Google Scholar 

  17. P.Y. Tang, Y.Q. Zhao, M.Y. Wang, C.L. Xu, Nanoscale 5, 8156–8163 (2013)

    Article  Google Scholar 

  18. H. Yu, X.H. Rui, H.T. Tan, J. Chen, X. Huang, C. Xu et al., Nanoscale 5, 4937–4943 (2013)

    Article  Google Scholar 

  19. K.R. Prasad, N. Miura, Electrochem. Commun. 6, 1004–1008 (2004)

    Article  Google Scholar 

  20. J. Zeng, S.P. Wang, J.X. Yu, H. Cheng, H.B. Tan, Q.L. Liu, J.P. Wu, J. Solid State Electrochem. 18, 1585-1591 (2014)

    Article  Google Scholar 

  21. S.Q. Zhao, T.M. Liu, Y. Zhang, W. Zeng, T.M. Li, S. Hussain, D.W. Hou, X.H. Peng, J Mater Sci. Mater. Electron. (2016). doi:10.1007/s10854-015-4154-1

    Google Scholar 

  22. D.F. Yang, J. Power Sources 198, 416–422 (2012)

    Article  Google Scholar 

  23. M. Nakayama, A. Tanaka, Y. Sato, T. Tonosaki, K. Ogura, Langmuir 21, 5907–5913 (2005)

    Article  Google Scholar 

  24. E. Machefaux, T. Brousse, D. Belanger, D. Guyomard, J. Power Sources 165, 651–655 (2007)

    Article  Google Scholar 

  25. D.P. Dubal, W.B. Kim, C.D. Lokhande, J. Phys. Chem. Solids 73, 18–24 (2012)

    Article  Google Scholar 

  26. M.T. Lee, J.K. Chang, Y.T. Hsieh, W.T. Tsai, J. Power Sources 185, 1550–1556 (2008)

    Article  Google Scholar 

  27. D.F. Yang, J. Power Sources 228, 89–96 (2013)

    Article  Google Scholar 

  28. Y. Chen, Y. Zhao, X. An, J. Liu, Y. Dong, L. Chen, Electrochim. Acta 54, 5844–5850 (2009)

    Article  Google Scholar 

  29. W.L. Yang, Z. Gao, J. Wang, Electrochem. Acta. 69, 112–119 (2012)

    Article  Google Scholar 

  30. J. Zhu, J. He, ACS Appl. Mater. Interfaces 4, 1770–1776 (2012)

    Article  Google Scholar 

  31. X. Zhang, P. Yu, H.T. Zhang, D.C. Zhang, X.Z. Sun, Y.W. Ma, Electrochim. Acta 89, 523–529 (2013)

    Article  Google Scholar 

  32. M. Huang, X.L. Zhao, F. Li, L.L. Zhang, Y.X. Zhang, J. Power Sources 277, 36–43 (2015)

    Article  Google Scholar 

  33. S.Q. Zhao, T.M. Liu, D.W. Hou et al., Appl. Surf. Sci. 356, 259–265 (2015)

    Article  Google Scholar 

  34. M. Liu, L. Gan, W. Xiong, Z. Xu, D. Zhu, L. Chen, J. Mater. Chem. A 2, 2555–2562 (2014)

    Article  Google Scholar 

  35. Y. Luo, D. Kong, J. Luo, S. Chen, D. Zhang, K. Qiu, X. Qi, H. Zhang, C.M. Li, T. Yu, RSC Adv. 3, 14413–14422 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support to this work from the National Natural Science Foundation of China under Grant Number 11332013, the fund of Chongqing University’s Large-scale Equipment (No. 2013121568), and Graduate Student Scientific Research Innovation Project of Chongqing (No. CYS14011). Fundamental Research Funds for Central Universities (No. 106112015CDJXY130013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianmo Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Liu, T., Zhang, L. et al. Facile synthesis of nickel doped walnut-like MnO2 nanoflowers and their application in supercapacitor. J Mater Sci: Mater Electron 27, 6202–6207 (2016). https://doi.org/10.1007/s10854-016-4550-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4550-1

Keywords

Navigation