Skip to main content
Log in

The role of europium and dysprosium in the bluish-green long lasting Sr2Al2SiO7:Eu2+, Dy3+ phosphor by solid state reaction method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Sr2Al2SiO7; Sr2Al2SiO7:Eu2+; Sr2Al2SiO7:Dy3+ and Sr2Al2SiO7:Eu2+, Dy3+ phosphors were synthesized by the traditional high temperature solid state reaction method. The synthesized phosphors were characterized by powder X-ray diffraction, energy dispersive X-ray spectroscopy, thermoluminescence (TL), photoluminescence (PL) long afterglow and mechanoluminescence (ML) techniques. The crystal structures of sintered phosphors were gehlenite type structure which belongs to the tetragonal crystallography. The TL properties of these phosphors were investigated and results were also compared. Under the ultraviolet excitation, the emission spectra of Sr2Al2SiO7:Eu2+ and Sr2Al2SiO7:Eu2+, Dy3+ phosphors were composed of a broad band peaking at 490 nm (bluish-green), belonging to the broad emission band and Sr2Al2SiO7:Dy3+ phosphor emits the white light, which was confirmed from the calculated CIE coordinates. When the Sr2Al2SiO7:Eu2+ phosphor is co-doped with Dy3+, the intensity of TL, PL, afterglow and ML is strongly enhanced. Decay graph indicate that both the sintered phosphors contains fast decay and slow decay process. The ML intensities of Sr2Al2SiO7:Dy3+; Sr2Al2SiO7:Eu2+ and Sr2Al2SiO7:Eu2+, Dy3+ phosphors were proportionally increased with the increasing impact velocity of the moving piston, which suggests that these phosphor can be used as sensors to detect the stress of an object.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. N. Lakshminarasimhan, U.V. Varadaraju, Mater. Res. Bull. 43, 2946–2953 (2008)

    Article  Google Scholar 

  2. H.W. Leverenz, An Introduction to Luminescence of Solids (Dover Publications Inc., New York, 1968)

    Google Scholar 

  3. I.P. Sahu, D.P. Bisen, N. Brahme, M. Ganjir, Lumin. J. Biol. Chem. Lumin. (2015). doi:10.1002/bio.2869

    Google Scholar 

  4. H. Wu, Y. Hu, L. Chen, X. Wang, J. Alloys Compds. 509, 4304–4307 (2011)

    Article  Google Scholar 

  5. Y. Chen, X. Cheng, M. Liu, Z. Qi, C. Shi, J. Lumin. 129, 531–535 (2009)

    Article  Google Scholar 

  6. H. Wu, Y. Hu, G. Ju, L. Chen, X. Wang, Z. Yang, J. Lumin. 131, 2441–2445 (2011)

    Article  Google Scholar 

  7. S.H.M. Poort, W.P. Blokpoel, G. Blasse, Chem. Mater. 7, 1547–1551 (1995)

    Article  Google Scholar 

  8. R. Shrivastava, J. Kaur, Chin. Chem. Lett. (2015). doi:10.1016/j.cclet.2015.05.028

    Google Scholar 

  9. K.Y. Jung, H.W. Lee, H.K. Jung, Chem. Mater. 18, 2249–2255 (2006)

    Article  Google Scholar 

  10. X.J. Li, Y.D. Qu, X.H. Xie, Z.L. Wang, R.Y. Li, Mater. Lett. 60, 3673–3677 (2006)

    Article  Google Scholar 

  11. H. Takasaki, S. Tanabe, T. Hanada, J. Ceram. Soc. Jpn 104, 322–326 (1996)

    Article  Google Scholar 

  12. H. Yamamoto, T. Matsuzawa, J. Lumin. 73, 287–289 (1997)

    Article  Google Scholar 

  13. I.P. Sahu, D.P. Bisen, N. Brahme, J. Radiat. Res. Appl. Sci. (2015). doi:10.1016/j.jrras.2015.02.007

    Google Scholar 

  14. M. Kimata, Z. Kristallogr. 167, 103–116 (1984)

    Article  Google Scholar 

  15. M. Merlini, M. Gemmi, G. Artioli, Z. Kristallogr. Suppl. 23, 419–424 (2006)

    Article  Google Scholar 

  16. Q. Zhang, J. Wang, M. Zhang, Q. Su, Appl. Phys. B 92, 195–198 (2008)

    Article  Google Scholar 

  17. X. Tan, J. Alloys Compds. 477, 648–651 (2009)

    Article  Google Scholar 

  18. C.N. Xu, T. Wantanabe, M. Akiyama, X.G. Zheng, Appl. Phys. Lett. 74, 1236–1238 (1999)

    Article  Google Scholar 

  19. I.P. Sahu, D.P. Bisen, R.K. Tamrakar, R. Shrivastava, Res. Chem. Intermed. (2015). doi:10.1007/s11164-015-2120-4

    Google Scholar 

  20. C.N. Xu, T. Wantanabe, M. Akiyama, X.G. Zheng, Appl. Phys. Lett. 74, 2414–2416 (1999)

    Article  Google Scholar 

  21. C.N. Xu, X.G. Zheng, M. Akiyama, K. Nonaka, T. Wantanabe, Appl. Phys. Lett. 76, 179–181 (2000)

    Article  Google Scholar 

  22. C.N. Xu, X.G. Zheng, T. Wantanabe, M. Akiyama, I. Usui, Thin Solid Films 352, 273–278 (1999)

    Article  Google Scholar 

  23. C. Zhao, D. Chen, Y. Yuan, M. Wu, Mater. Sci. Eng., B 133, 200–204 (2006)

    Article  Google Scholar 

  24. JCPDS file number 75-1234, JCPDS International Center for Diffraction Data

  25. S. Basuna, G.F. Imbuschb, D.D. Jiac, W.M. Yenc, J. Lumin. 104, 283–294 (2003)

    Article  Google Scholar 

  26. R. Chen, Y. Kirsh, Pergamon Press. Oxford 15, 167 (1981)

    Google Scholar 

  27. F.M. Emen, N. Kulcu, A.N. Yazici, Eur. J. Chem. 1(1), 28–32 (2010)

    Article  Google Scholar 

  28. R. Chen, J. Appl. Phys. 40(2), 570–585 (1969)

    Article  Google Scholar 

  29. I.P. Sahu, D.P. Bisen, N. Brahme, Displays 38, 68–76 (2015)

    Article  Google Scholar 

  30. C.Y. Li, Q. Su, J.R. Qiu, Chin. J. Lumin. 24, 19–27 (2003)

    Google Scholar 

  31. H.N. Luitel, T. Watari, R. Chand, T. Torikai, M. Yada, H. Mizukami, Mater. Sci. Eng., B 178(12), 834–842 (2013)

    Article  Google Scholar 

  32. T. Katsumata, R. Sakai, S. Komuro, T. Morikawa, J. Electrochem. Soc. 150, H111–H114 (2003)

    Article  Google Scholar 

  33. Z. Yuan, C. Chang, D. Mao, W. Ying, J. Alloys Compd. 377(1–2), 268–271 (2004)

    Article  Google Scholar 

  34. H. Kubo, H. Aizawa, T. Katsumata, S. Komuro, T. Morikawa, J. Cryst. Growth 275(12), 1767–1771 (2005)

    Article  Google Scholar 

  35. H. Wu, Y. Hu, B. Zeng, Z. Mou, L. Deng, J. Phys. Chem. Solids 72, 1284–1289 (2011)

    Article  Google Scholar 

  36. V. Pagonis, G. Kitis, C. Furetta, Numerical and Practical Exercises in Thermoluminescence (Springer, Berlin, 2006)

    Google Scholar 

  37. R. Chen, S.W.S. McKeever, Theory of Thermoluminescence and Related Phenomenon (World Scientific Press, Singapore, 1997)

    Book  Google Scholar 

  38. M. Mashangva, M.N. Singh, T.B. Singh, Indian J. Pure Appl. Phys. 49, 583–589 (2011)

    Google Scholar 

  39. G.S.R. Raju, J.Y. Park, H.C. Jung, B.K. Moon, J.H. Jeong, J.H. Kim, Curr. Appl Phys. 9(2), 92–95 (2009)

    Article  Google Scholar 

  40. N.N. Yamashita, J. Phys. Soc. Jpn. 35, 1089–1097 (1973)

    Article  Google Scholar 

  41. A. Zukauskas, M.S. Shur, R. Gaska, Introduction to Solid State Lighting (Wiley, New York, 2002)

    Google Scholar 

  42. I.P. Sahu, D.P. Bisen, N. Brahme, Displays 35, 279–286 (2014)

    Article  Google Scholar 

  43. I.P. Sahu, D.P. Bisen, N. Brahme, M. Ganjir, Lumin. J. Biol. Chem. Lumin. (2015). doi:10.1002/bio.2900

    Google Scholar 

  44. CIE 1931. International Commission on Illumination. Publication CIE no. 15 (E-1.3.1) 1931

  45. G. Blasse, B.C. Grabmarier, Luminescent Materials (Springer, Berlin, 1994), p. 96

    Book  Google Scholar 

  46. I.P. Sahu, D.P. Bisen, N. Brahme, R.K. Tamrakar, J. Radiat. Res. Appl. Sci. 8, 104–109 (2015)

    Article  Google Scholar 

  47. R. Sakai, T. Katsumata, S. Komuro, T. Morikawa, J. Lumin. 85, 149–154 (1999)

    Article  Google Scholar 

  48. I.P. Sahu, D.P. Bisen, N. Brahme, R. Sharma, Res. Chem. Intermed. (2014). doi:10.1007/s11164-014-1767-6

    Google Scholar 

  49. I.P. Sahu, D.P. Bisen, N. Brahme, L. Wanjari, R.K. Tamrakar, Res. Chem. Intermed. (2015). doi:10.1007/s11164-015-1929-1

    Google Scholar 

  50. T. Aitasalo, J. Holsa, H. Jungner, M. Lastusaari, J. Niittykoski, J. Phys. Chem. B 110, 4589–4598 (2006)

    Article  Google Scholar 

  51. K.V.D. Eeckhout, P.F. Smet, D. Poelman, Materials 3, 2536–2566 (2010)

    Article  Google Scholar 

  52. D.R. Vij, Luminescence of Solids (Plenum Press, New York, 1998)

    Book  Google Scholar 

  53. B.P. Chandra, J. Lumin. 131, 1203–1210 (2011)

    Article  Google Scholar 

  54. I.P. Sahu, D.P. Bisen, N. Brahme, Lumin. J. Biol. Chem. Lumin. (2014). doi:10.1002/bio.2771

    Google Scholar 

  55. B.P. Chandra, R.A. Rathore, Cryst. Res. Tech. 30, 885–896 (1995)

    Article  Google Scholar 

  56. H. Zhang, H. Yamada, N. Terasaki, C.N. Xu, Thin Solid Films 518, 610–613 (2009)

    Article  Google Scholar 

  57. H. Zhang, H. Yamada, N. Terasaki, C.N. Xu, Int. J. Mod. Phys. B 23, 1028–1033 (2009)

    Article  Google Scholar 

  58. H. Zhang, H. Yamada, N. Terasaki, C.N. Xu, Phys. E 42, 2872–2875 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

We are very much grateful to UGC-DAE Consortium for Scientific Research, Indore (M.P.) for the XRD Characterization and we are also very much thankful to Dr. Mukul Gupta for his co-operation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ishwar Prasad Sahu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, I.P. The role of europium and dysprosium in the bluish-green long lasting Sr2Al2SiO7:Eu2+, Dy3+ phosphor by solid state reaction method. J Mater Sci: Mater Electron 26, 7059–7072 (2015). https://doi.org/10.1007/s10854-015-3327-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3327-2

Keywords

Navigation