Skip to main content
Log in

Magnetic and dielectric properties of Co–Zn nanoferrites for high-frequency miniaturized antennas

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The current study aims to determine the optimal ferrite composition for a substrate material with good magneto-dielectric properties and low losses in order to fabricate high-frequency miniaturized antennas. Cobalt–zinc ferrite samples with different concentration of zinc were synthesized using the sol–gel method and polyvinyl alcohol as the chelating agent. The lattice constant obtained through experimentation agrees with the one obtained from the suggested cation distribution and Rietveld refinement, indicating that zinc has entered the tetrahedral sites of the spinel structure. A higher zinc concentration was associated with a lower average grain size, ranging from 96.7 to 62.4 nm. The investigation will examine complex permittivity, complex permeability, dielectric and magnetic loss tangents, and AC conductivity in order to evaluate the effects of frequencies between 1 MHz and 2 GHz. The material with the composition Co0.4Zn0.6Fe2O4 exhibits low AC conductivity (1.28 × 10−6 S/cm), low values of magnetic and dielectric loss tangents (0.047, 0.013) at 100 MHz frequency, and a stable miniaturization factor (n = 4.2) over a broad frequency range of 10 MHz to 1 GHz. The persistent magneto-dielectric behavior and low-loss properties of cobalt–zinc nanoferrite confirm that it is a suitable substrate material for high-frequency antenna design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4.
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be made available on the request

References

  1. S.I. Ahmad, Nano cobalt ferrites: doping, structural, low-temperature, and room temperature magnetic and dielectric properties—a comprehensive review. J. Magn. Magn. Mater. 562, 169840 (2022)

    Article  CAS  Google Scholar 

  2. V. Adersh, A. Rajan, S. Ganesanpotti, MgFe1.98O4–BaFe12O19 magneto-dielectric composites based ferrite resonator antenna for super-high frequency applications. Ceram. Int. 48, 24531–24539 (2022)

    Article  CAS  Google Scholar 

  3. G. Gan, L. Dian, Y. Yin, Z. Zheng, X. Zhang, Z. Zhu, G. Zou, B. Chen, F. Qiu, G. Gou, Broadband microwave magnetic and dielectric properties of (Mg0.6Cd0.4Co0.05Fe1.95O4)1x + (MgTi2O4)x with x contents of 0.00, 0.06, 0.12, and 0.18 composites with low loss for high-frequency antennae. J. Mater. Res. Technol. 24, 1363–1372 (2023)

    Article  CAS  Google Scholar 

  4. A.U. Rehman, S. Sharif, H.H. Hegazy, N. Morley, N. Amin, M. Akhtar, M.I. Arshad, Z. Farooq, Z. Munir, T. Munir, Low dielectric loss, and enhanced magneto-dielectric properties of Cu0.5Cd0.5xCoxFe2O4 ferrites via Co2+ substitution. Mater. Today Commun. 34, 105371 (2023)

    Article  CAS  Google Scholar 

  5. S.J. Kumar, P. Prameela, K.S. Rao, J.N. Kiran, K.H. Rao, Structural and magnetic properties of copper-substituted nickel–zinc nanoparticles prepared by sol–gel method. J. Supercond. Nov. Magn. 33, 693–705 (2020)

    Article  CAS  Google Scholar 

  6. T.R.K. Pydiraju, K.S. Rao, P.A. Rao, M.C. Varma, A.S. Kumar, K.H. Rao, Co–Cd nanoferrite for high frequency application with phenomenal rise in DC resistivity. J. Magn. Magn. Mater. 524, 167662 (2021)

    Article  CAS  Google Scholar 

  7. G. Nandhini, M.K. Shobana, Role of ferrite nanoparticles in hyperthermia applications. J. Magn. Magn. Mater. 552, 169236 (2022)

    Article  CAS  Google Scholar 

  8. R.R. Akurati, N.K. Jaladi, S.R. Kurapati, G. Kapusetti, M. Choppadandi, P. Mandal, Preparation, characterization and study of magnetic induction heating of Co–Cu nanoparticles. Mater. Today Commun. 34, 104964 (2023)

    Article  CAS  Google Scholar 

  9. T.A.T. Sulong, R.A.M. Osman, M.S. Idris, Trends of microwave dielectric materials for antenna application. AIP Conf. Proc. 1756, 070003 (2016). https://doi.org/10.1063/1.4958779

    Article  Google Scholar 

  10. S. Pandey, D. Kumar, O. Parkash, L. Pandey, Design and development of dielectric resonator antenna using ceramic materials: an overview. Trans. Indian Inst. Met. 72, 2019–2028 (2019)

    Article  Google Scholar 

  11. S. Siragam, R.S. Dubey, L. Pappula, G. SatheeshBabu, Synthesis and investigation of dielectric ceramic nanoparticles for microstrip patch antenna applications. Sci. Rep. 12, 3929 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. S. Hua, X. Tang, H. Zhang, Y. Jing, F. Bai, Low-loss magneto-dielectric materials: approaches and developments. J. Electron. Mater. 43, 299–307 (2014)

    Article  Google Scholar 

  13. A. Saini, A. Thakur, P. Thakur, Miniaturization and bandwidth enhancement of a microstrip patch antenna using magneto-dielectric materials for proximity fuze application. J. Electron. Mater. 46, 1902–1907 (2017)

    Article  CAS  Google Scholar 

  14. Y.G. Adhiyoga, S.F. Rahman, C. Apriono, E.T. Rahardjo, Miniaturized 5G antenna with enhanced gain by using stacked structure of split-ring resonator array and magneto-dielectric composite material. IEEE Access 10, 35876–35887 (2022)

    Article  Google Scholar 

  15. J.-L. Mattei, D. Souriou, A. Chevalier, Magnetic and dielectric properties in the UHF frequency band of half-dense Ni–Zn–Co ferrites ceramics with Fe-excess and Fe-deficiency. J. Magn. Magn. Mater. 447, 9–14 (2018)

    Article  CAS  Google Scholar 

  16. Z. Zheng, X. Wu, F. Li, P. Yin, V.G. Harris, Low-loss NiZnCo ferrite composites with tunable magneto-dielectric performances for high-frequency applications. J. Alloys Compd. 894, 162471 (2022)

    Article  CAS  Google Scholar 

  17. A. Mahesh Kumar, K. Srinivasa Rao, M. Chaitanya Varma, K.H. Rao, Investigations of surface spin canting in Ni–Zn nanoferrite and its development as magnetic core for microwave applications. J. Magn. Magn. Mater. 471, 262–266 (2019)

    Article  Google Scholar 

  18. M.K. Bharti, S. Chalia, P. Thakur, G.C. Hermosa, A.C.A. Sun, A. Thakur, Low-loss characteristics and sustained magneto-dielectric behaviour of cobalt ferrite nanoparticles over 1–6 GHz frequency range. Ceram. Int. 47, 22164–22171 (2021)

    Article  CAS  Google Scholar 

  19. M.D. Shultz, S. Calvin, P.P. Fatouros, S.A. Morrison, E.E. Carpenter, Enhanced ferrite nanoparticles as MRI contrast agents. J. Magn. Magn. Mater. 311, 464–468 (2007)

    Article  CAS  Google Scholar 

  20. C. Virlan, G. Bulai, O.F. Caltun, R. Hempelmann, A. Pui, Rare earth metals’ influence on the heat generating capability of cobalt ferrite nanoparticles. Ceram. Int. 42, 11958–11965 (2016)

    Article  CAS  Google Scholar 

  21. K. Srinivasa Rao, P. Appa Rao, M. Chaitanya Varma, K.H. Rao, Development of least sized magnetic nanoparticles with high saturation magnetization. J. Alloys Compd. 750, 838–847 (2018)

    Article  Google Scholar 

  22. P. Thakur, N. Gahlawat, P. Punia, S. Kharbanda, B. Ravelo, A. Thakur, Cobalt nanoferrites: a review on synthesis, characterization, and applications. J. Supercond. Nov. Magn. 35, 2639–2669 (2022)

    Article  CAS  Google Scholar 

  23. A. Chérif, M. Saidani, I. Chérif, J.M. Greneche, N.T. Mliki, Structure analysis, morphological observations and electrical behavior of Co0.4Fe2.6O4 synthesized by surfactant-free solvothermal route. Solid State Sci. 134, 107028 (2022)

    Article  Google Scholar 

  24. M.N. Kiani, M.S. Butt, I.H. Gul, M. Saleem, M. Irfan, A.H. Baluch, M.A. Akram, M.A. Raza, Synthesis and characterization of cobalt-doped ferrites for biomedical applications. ACS Omega 8(4), 3755–3761 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. R.S. Turtelli, M. Atif, N. Mehmood, F. Kubel, K. Biernacka, W. Linert, R. Grössinger, C. Kapusta, M. Sikora, Interplay between the cation distribution and production methods in cobalt ferrite. Mater. Chem. Phys. 132, 832–838 (2012)

    Article  Google Scholar 

  26. S. Noor, M.A. Hakim, S.S. Sikder, S.M. Hoque, K.H. Maria, P. Nordblad, Magnetic behavior of Cd2+ substituted cobalt ferrites. J. Phys. Chem. Solids 73, 227–231 (2012)

    Article  CAS  Google Scholar 

  27. S.R. Naik, A.V. Salker, S.M. Yusuf, S.S. Meena, Influence of Co2+ distribution and spin–orbit coupling on the resultant magnetic properties of spinel cobalt ferrite nanocrystals. J. Alloys Compd. 566, 54–61 (2013)

    Article  CAS  Google Scholar 

  28. J. Thomas, N. Thomas, F. Girgsdies, M. Beherns, X. Huang, V.D. Sudheesh, V. Sebastian, Synthesis of cobalt ferrite nanoparticles by constant pH co-precipitation and their high catalytic activity in CO oxidation. New J. Chem. 41, 7356–7363 (2017)

    Article  CAS  Google Scholar 

  29. C.R. Stein, M.T.S. Bezerra, G.H.A. Holanda, J. André-Filho, P.C. Morais, Structural and magnetic properties of cobalt ferrite nanoparticles synthesized by co-precipitation at increasing temperatures. AIP Adv. 8, 056303 (2018)

    Article  Google Scholar 

  30. Y. Hadouch, D. Mezzane, L. Hajji, Y. Gagou, Z. Kutnjak, V. Laguta, Y. Kopelevich, M. El Marssi, Enhanced relative cooling power and large inverse magnetocaloric effect of cobalt ferrite nanoparticles synthesized by auto-combustion method. J. Magn. Magn. Mater. 563, 169925 (2022)

    Article  CAS  Google Scholar 

  31. P.H. Nam, N.X. Phuc, D.H. Manh, D.K. Tung, V.Q. Nguyen, N.H. Nam, P.K. Son, T.N. Bach, P.T. Phong, Physical characterization and heating efficacy of chitosan-coated cobalt ferrite nanoparticles for hyperthermia application. Physica E 134, 114862 (2021)

    Article  CAS  Google Scholar 

  32. P. Appa Rao, K. Srinivasa Rao, T.R.K. Pydi Raju, G. Kapusetti, M. Choppadandi, M.C. Varma, K.H. Rao, A systematic study of cobalt–zinc ferrite nanoparticles for self-regulated magnetic hyperthermia. J. Alloys Compd. 794, 60–67 (2019)

    Article  CAS  Google Scholar 

  33. Y. Cedeño-Mattei, O. Perales-Perez, M.S. Tomar, F. Roman, P.M. Voyles, W.G. Stratton, Tuning of magnetic properties in cobalt ferrite nanocrystals. J. Appl. Phys. 103, 07E512 (2008)

    Article  Google Scholar 

  34. M.M. El-Okr, M.A. Salem, M.S. Salim, R.M. El-Okr, M. Ashoush, H.M. Talaat, Synthesis of cobalt ferrite nanoparticles and their magnetic characterization. J. Magn. Magn. Mater. 323, 920–926 (2011)

    Article  CAS  Google Scholar 

  35. A. Manohar, D.D. Geleta, C. Krishnamoorthi, J. Lee, Synthesis, characterization and magnetic hyperthermia properties of nearly monodisperse CoFe2O4 nanoparticles. Ceram. Int. 46, 28035–28041 (2020)

    Article  CAS  Google Scholar 

  36. I.H. Gul, A.Z. Abbasi, F. Amin, M. Anis-ur-Rehman, A. Maqsood, Structural, magnetic and electrical properties of Co1−xZnxFe2O4 synthesized by co-precipitation method. J. Magn. Magn. Mater. 311, 494–499 (2007)

    Article  CAS  Google Scholar 

  37. M.F. Zscherp, M. Bastianello, S. Nappini, E. Magnano, D. Badocco, S. Gross, M.T. Elm, Impact of inversion and non-stoichiometry on the transport properties of mixed zinc–cobalt ferrites. J. Mater. Chem. C 10, 2976–2987 (2022)

    Article  CAS  Google Scholar 

  38. C.C. Naik, A.V. Salker, Effect of fractional substitution of Sb3+ ions on structural, magnetic and electrical properties of cobalt ferrite. Mater. Sci. Eng. B 258, 114574 (2020)

    Article  CAS  Google Scholar 

  39. D. Chahar, S. Taneja, P. Thakur, A. Thakur, Remarkable resistivity and improved dielectric properties of Co–Zn nanoferrites for high frequency applications. J. Alloys Compd. 843, 155681 (2020)

    Article  CAS  Google Scholar 

  40. J. López, L.F. González-Bahamón, J. Prado, J.C. Caicedo, G. Zambrano, M.E. Gómez, J. Esteve, P. Prieto, Study of magnetic and structural properties of ferrofluids based on cobalt–zinc ferrite nanoparticles. J. Magn. Magn. Mater. 324, 394–402 (2012)

    Article  Google Scholar 

  41. N. Sattarahmady, T. Zare, A.R. Mehdizadeh, N. Azarpira, M. Heidari, M. Lotfi, H. Heli, Dextrin-coated zinc substituted cobalt-ferrite nanoparticles as an MRI contrast agent: in vitro and in vivo imaging studies. Colloids Surf. B 129, 15–20 (2015)

    Article  CAS  Google Scholar 

  42. P.A. Vinosha, A. Manikandan, A.S.J. Ceicilia, A. Dinesh, G.F. Nirmala, A.C. Preetha, Y. Slimani, M.A. Almessiere, A. Baykal, B. Xavier, Review on recent advances of zinc substituted cobalt ferrite nanoparticles: synthesis characterization and diverse applications. Ceram. Int. 47, 10512–10535 (2021)

    Article  CAS  Google Scholar 

  43. Y.W. Liu, J. Zhang, L.S. Gu, L.X. Wang, Q.T. Zhang, Preparation and electromagnetic properties of nanosized Co0.5Zn0.5Fe2O4 ferrite. Rare Met. 41, 3228–3232 (2022)

    Article  Google Scholar 

  44. A. Joshi, R.C. Srivastava, Study of structural, electrical, and magnetic properties of Co–Zn ferrite and Co–Zn ferrite/polythiophene nanocomposite. Mater. Today 78, 774–779 (2023)

    CAS  Google Scholar 

  45. J. Rodriguez-Carvajal, Introduction to the program FullProf, Laboratoire Leon Brillouin (CEA-CNRS), CEA/Saclay, France (2003)

  46. S.K. Gore, S.S. Jadhav, V.V. Jadhav, S.M. Patange, M. Naushad, R.S. Mane, K.H. Kim, The structural and magnetic properties of dual phase cobalt ferrite. Sci. Rep. 7, 2524 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  47. G. Gan, D. Zhang, J. Li, G. Wang, X. Huang, Y. Yang, Y. Rao, F. Xu, X. Wang, H. Zhang, R.T. Chen, Equivalent permeability and permittivity of Sm substituted Mg–Cd ferrites for high-frequency applications. J. Alloys Compd. 819, 153059 (2020)

    Article  CAS  Google Scholar 

  48. P.V. Ramana, K. Srinivasa Rao, K.H. Rao, Influence of iron content on the structural and magnetic properties of Ni–Zn ferrite nanoparticles synthesized by PEG assisted sol–gel method. J. Magn. Magn. Mater. 465, 747–755 (2018)

    Article  CAS  Google Scholar 

  49. I. Sharifi, H. Shokrollahi, Nanostructural, magnetic and Mössbauer studies of nanosized Co1xZnxFe2O4 synthesized by co-precipitation. J. Magn. Magn. Mater. 324, 2397–2403 (2012)

    Article  CAS  Google Scholar 

  50. A.V. Raut, R.S. Barkule, D.R. Shengule, K.M. Jadhav, Synthesis, structural investigation and magnetic properties of Zn2+ substituted cobalt ferrite nanoparticles prepared by the sol–gel auto-combustion technique. J. Magn. Magn. Mater. 358–359, 87–92 (2014)

    Article  Google Scholar 

  51. P.T. Phong, P.H. Nam, N.X. Phuc, B.T. Huy, L.T. Lu, D.H. Manh, I.-J. Lee, Effect of zinc concentration on the structural, optical, and magnetic properties of mixed Co–Zn ferrites nanoparticles synthesized by low-temperature hydrothermal method. Metall Mater Trans A 50, 1571–1581 (2019)

    Article  CAS  Google Scholar 

  52. M.A. Gabal, Y.M. AlAngari, Low-temperature synthesis of nanocrystalline NiCuZn ferrite and the effect of Cr substitution on its electrical properties. J. Magn. Magn. Mater. 322, 3159–3165 (2010)

    Article  CAS  Google Scholar 

  53. S. Bhukal, S. Mor, S. Bansal, J. Singh, S. Singhal, Influence of Cd2+ ions on the structural, electrical, optical and magnetic properties of Co–Zn nanoferrites prepared by sol–gel auto combustion method. J. Mol. Struct. 1071, 95–102 (2014)

    Article  CAS  Google Scholar 

  54. S. Supriya, S. Kumar, M. Kar, Electrical properties and dipole relaxation behavior of zinc-substituted cobalt ferrite. J. Electron. Mater. 46, 6884–6894 (2017)

    Article  CAS  Google Scholar 

  55. S.K. Abdel-Aal, A.S. Abdel-Rahman, Graphene influence on the structure, magnetic, and optical properties of rare-earth perovskite. J. Nanopart. Res. 22, 267 (2020)

    Article  CAS  Google Scholar 

  56. S.K. Abdel-Aal, A.I. Beskrovnyi, A.M. Ionov, R.N. Mozhchil, A.S. Abdel-Rahman, Structure investigation by neutron diffraction and X-ray diffraction of graphene nanocomposite CuO–rGO prepared by low-cost method. Phys. Status. Solidi A 218, 2100138 (2021). https://doi.org/10.1002/pssa.202100138

    Article  CAS  Google Scholar 

  57. A. Thakur, P. Thakur, J.-H. Hsu, Smart magnetodielectric nano-materials for the very high frequency applications. J. Alloys Compd. 509, 5315–5319 (2011)

    Article  CAS  Google Scholar 

  58. N.M. Deraz, A. Alarifi, Structural, morphological and magnetic properties of nano-crystalline zinc substituted cobalt ferrite system. J. Anal. Appl. Pyrol. 94, 41–47 (2012)

    Article  CAS  Google Scholar 

  59. M.A. Gabal, A.A. Al-Juaid, S.M. Al-Rashed, M.A. Hussein, F. Al-Marzouki, Synthesis, characterization and electromagnetic properties of Zn-substituted CoFe2O4 via sucrose assisted combustion route. J. Magn. Magn. Mater. 426, 670–679 (2017)

    Article  CAS  Google Scholar 

  60. L. Kumar, P. Kumar, M. Kar, Cation distribution by Rietveld technique and magnetocrystalline anisotropy of Zn substituted nanocrystalline cobalt ferrite. J. Alloys Compd. 551, 72–81 (2013)

    Article  CAS  Google Scholar 

  61. C. Upadhyay, H.C. Verma, S. Anand, Cation distribution in nanosized Ni–Zn ferrites. J. Appl Phys. 95, 5746 (2004)

    Article  CAS  Google Scholar 

  62. M.C. Dimri, A. Verma, S.C. Kashyap, D.C. Dube, O.P. Thakur, C. Prakash, Structural, dielectric and magnetic properties of NiCuZn ferrite grown by citrate precursor method. Mater. Sci. Eng. B 133, 42–48 (2006)

    Article  CAS  Google Scholar 

  63. K.M. Batoo, Structural and electrical properties of Cu doped NiFe2O4 nanoparticles prepared through modified citrate gel method. J. Phys. Chem. Solids 72, 1400–1407 (2011)

    Article  CAS  Google Scholar 

  64. N. Ahmad, S. Khan, M.M.N. Ansari, Optical, dielectric and magnetic properties of Mn doped SnO2 diluted magnetic semiconductors. Ceram. Int. 44, 15972–15980 (2018)

    Article  CAS  Google Scholar 

  65. M.N. Akhtar, A. Rahman, A.B. Sulong, M.A. Khan, Structural, spectral, dielectric and magnetic properties of Ni0.5MgxZn0.5xFe2O4 nanosized ferrites for microwave absorption and high frequency applications. Ceram. Int. 43, 4357–4365 (2017)

    Article  CAS  Google Scholar 

  66. A. Thakur, P. Thakur, J.-H. Hsu, Novel magnetodielectric nanomaterials with matching permeability and permittivity for the very-high-frequency applications. Scr. Mater. 64, 205–208 (2011)

    Article  CAS  Google Scholar 

  67. M. Atif, M.W. Asghar, M. Nadeem, W. Khalid, Z. Ali, S. Badshah, Synthesis and investigation of structural, magnetic and dielectric properties of zinc substituted cobalt ferrites. J. Phys. Chem. Solids 123, 36–42 (2018)

    Article  CAS  Google Scholar 

  68. P. Mathur, A. Thakur, J.H. Lee, M. Singh, Sustained electromagnetic properties of Ni–Zn–Co nanoferrites for the high-frequency applications. Mater. Lett. 64, 2738–2741 (2010)

    Article  CAS  Google Scholar 

  69. N.S. Kumar, R.P. Suvarna, K.C.B. Naidu, Microwave heated lead cobalt titanate nanoparticles synthesized by sol–gel technique: structural, morphological, dielectric, impedance and ferroelectric properties. Mater. Sci. Eng. B 242, 23–30 (2019)

    Article  CAS  Google Scholar 

  70. W. Bayoumi, Structural and electrical properties of zinc-substituted cobalt ferrite. J. Mater. Sci. 42, 8254–8261 (2007)

    Article  CAS  Google Scholar 

  71. K.M. Batoo, E.H. Raslan, Y. Yang, S.F. Adil, M. Khan, A. Imran, Y. Al-Douri, Structural, dielectric and low temperature magnetic response of Zn doped cobalt ferrite nanoparticles. AIP Adv. 9, 055202 (2019)

    Article  Google Scholar 

  72. J.S. Ghodake, T.J. Shinde, R.P. Patil, S.B. Patil, S.S. Suryavanshi, Initial permeability of Zn–Ni–Co ferrite. J. Magn. Magn. Mater. 378, 436–439 (2015)

    Article  CAS  Google Scholar 

  73. M.A. Rahman, M.T. Islam, M.J. Singh, I. Hossain, H. Rmili, M. Samsuzzaman, Magnetic, dielectric and structural properties of CoxZn(0.90–x)Al0.10Fe2O4 synthesized by sol–gel method with application as flexible microwave substrates for microstrip patch antenna. J. Mater. Res. Technol. 16, 934–943 (2022)

    Article  CAS  Google Scholar 

  74. A. Saini, A. Thakur, P. Thakur, Matching permeability and permittivity of Ni0.5Zn0.3Co0.2In0.1Fe1.9O4 ferrite for substrate of large bandwidth miniaturized antenna. J. Mater. Sci. 27, 2816–2823 (2016)

    CAS  Google Scholar 

  75. A. Saini, K. Rana, A. Thakur, P. Thakur, J.L. Mattei, Low loss composite nano ferrite with matching permittivity and permeability in UHF band. Mater. Res. Bull. 76, 94–99 (2016)

    Article  CAS  Google Scholar 

  76. A. Thakur, A. Chevalier, J.-L. Mattei, P. Queffélec, Low-loss spinel nanoferrite with matching permeability and permittivity in the ultrahigh frequency range. J. Appl. Phys. 108, 014301 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the help of the Advanced Analytical Laboratory of Andhra University, Visakhapatnam, and IIT Bombay for providing XRD, FESEM, and impedance analyzer facilities.

Funding

The authors declared that they have no funding for the work reported in this paper.

Author information

Authors and Affiliations

Authors

Contributions

PAR: investigation, methodology, and project administration; KSR: writing—original draft; KS: project administration; MKR: project administration; SR: resources and investigation; MCV: writing—review and editing; KHR: supervision and writing—original draft.

Corresponding authors

Correspondence to P. Appa Rao or S. Ramesh.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

The current investigation was carried out in close accordance with ethical norms, ensuring the protection of participants, the integrity of the research, and adherence to relevant guidelines. We think the ethical issues raised in this document demonstrate the robustness and reliability our research findings

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, P.A., Rao, K.S., Samatha, K. et al. Magnetic and dielectric properties of Co–Zn nanoferrites for high-frequency miniaturized antennas. J Mater Sci: Mater Electron 35, 462 (2024). https://doi.org/10.1007/s10854-024-12092-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12092-8

Navigation