Skip to main content
Log in

Effect of Ag on the properties of solders and brazing filler metals

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ag is used as a beneficial alloy element in no matter solders or brazing filler metals. Obviously, the addition of Ag has a positive function on melting temperature, wettability, mechanical property and conductivity of filler metals. Therefore, Ag is still widely used in many researches and production in spite of that Ag is very expensive. Respectively, three kind of typical solders (Sn–Ag–Cu, Sn–Zn and Sn–Bi) and brazing filler metals (Ag–Cu–Zn, Cu–P, and Zn–Al) have been chosen for illustration. This article summarizes research status on the studying of Ag-contained solders and brazing filler metals, also analyses influence rules of Ag addition on the change of filler metals’ physical property, microstructure as well as mechanical property. Moreover, the problems and difficulties in the process of study Ag-contained solders and brazing filler metals have been presented. Synchronously, some suggestions have been put forward which may solve the problems and difficulties mentioned above, which provides theory guide for the follow-up study of Ag-contained solders and brazing filler metals, and their prospects are also looked ahead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Q.Y. Zhang, H.S. Zhuang, Manual of brazing and soldering (China Machine Press, Beijing, 1998)

    Google Scholar 

  2. Schwartz MM. Brazing (ASM International, USA, 2003)

  3. D.A.A. Shnawah, M.F.B.M. Sabri, I.A. Badruddin et al., A review on effect of minor alloying elements on thermal cycling and drop impact reliability of low-Ag Sn–Ag–Cu solder joints. Microelectron. Int. 29(1), 47–57 (2012)

    Article  Google Scholar 

  4. F.Y. Hung, C.J. Wang, S.M. Huang et al., Thermoelectric characteristics and tensile properties of Sn–9Zn–xAg lead-free solders. J. Alloy. Compd. 420(1), 193–198 (2006)

    Article  Google Scholar 

  5. K.L. Lin, C.L. Shih, Microstructure and thermal behavior of Sn-Zn-Ag solders. J. Electron. Mater. 32(12), 1496–1500 (2003)

    Article  Google Scholar 

  6. H.W. Miao, J.G. Duh, B.S. Chiou, Thermal cycling test in Sn-Bi and Sn-Bi-Cu solder joints. J. Mater. Sci.: Mater. Electron. 11(8), 609–618 (2000)

    Google Scholar 

  7. P.T. Vianco, J.A. Rejent, Properties of ternary Sn–Ag–Bi solder alloys: part I—Thermal properties and microstructural analysis. J. Electron. Mater. 28(10), 1127–1137 (1999)

    Article  Google Scholar 

  8. M. Reid, J. Punch, M. Collins et al., Effect of Ag content on the microstructure of Sn–Ag–Cu based solder alloys. Solder. Surface Mount Technol. 20(4), 3–8 (2008)

    Article  Google Scholar 

  9. J.M. Song, G.F. Lan, T.S. Lui et al., Microstructure and tensile properties of Sn–9Zn–xAg lead-free solder alloys. Scripta Mater. 48(8), 1047–1051 (2003)

    Article  Google Scholar 

  10. P. He, X.C. Lu, B.B. Zhang et al., Effect of alloy element on microstructure and impact toughness of Sn-57Bi lead-free solders. J. Mater. Eng. 10(005), 13–17 (2010)

    Google Scholar 

  11. C. Chen, C. Huang, Effects of silver doping on electromigration of eutectic SnBi solder. J. Alloy. Compd. 461(1), 235–241 (2008)

    Article  Google Scholar 

  12. C. Burke, J. Punch, A comparison of the creep behavior of joint-scale SAC105 and SAC305 solder alloys. IEEE Trans. Compon. Packag. Manuf. Technol. 4(3), 516–527 (2014)

    Article  Google Scholar 

  13. K.L. Lin, C.L. Shih, Wetting interaction between Sn–Zn–Ag solders and Cu. J. Electron. Mater. 32(2), 95–100 (2003)

    Article  Google Scholar 

  14. H. Wang, S.B. Xue, F. Zhao et al., Effects of Ga, Al, Ag, and Ce multi-additions on the properties of Sn–9Zn lead-free solder. J. Mater. Sci.: Mater. Electron. 21(2), 111–119 (2010)

    Google Scholar 

  15. R.K. Shiue, L.W. Tsay, C.L. Lin et al., A study of Sn–Bi–Ag–(In) lead-free solders. J. Mater. Sci. 38(6), 1269–1279 (2003)

    Article  Google Scholar 

  16. P.T. Vianco, J.A. Rejent, Properties of ternary Sn–Ag–Bi solder alloys: part II—Wettability and mechanical properties analysis. J. Electron. Mater. 28(10), 1138–1143 (1999)

    Article  Google Scholar 

  17. H. Ma, J.C. Suhling, A review of mechanical properties of lead-free solders for electronic packaging. J. Mater. Sci. 44(5), 1141–1158 (2009)

    Article  Google Scholar 

  18. Kang SK, Lauro P, Shih DY, et al. Microstructure and mechanical properties of lead-free solders and solder joints used in microelectronic applications. IBM J. Res. Dev. 49(4.5), 607–620 (2005)

  19. G. Zeng, S. Xue, L. Zhang et al., A review on the interfacial intermetallic compounds between Sn–Ag–Cu based solders and substrates. J. Mater. Sci.: Mater. Electron. 21(5), 421–440 (2010)

    Google Scholar 

  20. J.M. Song, T.S. Lui, G.F. Lan et al., Resonant vibration behavior of Sn–Zn–Ag solder alloys. J. Alloy. Compd. 379(1), 233–239 (2004)

    Article  Google Scholar 

  21. S.P. Yu, H.J. Lin, M.H. Hon et al., Effects of process parameters on the soldering behavior of the eutectic Sn-Zn solder on Cu substrate. J. Mater. Sci.: Mater. Electron. 11(6), 461–471 (2000)

    Google Scholar 

  22. W.X. Chen, S.B. Xue, H. Wang et al., Effects of Ag on microstructures, wettabilities of Sn–9Zn–xAg solders as well as mechanical properties of soldered joints. J. Mater. Sci.: Mater. Electron. 21(5), 461–467 (2010)

    Google Scholar 

  23. R.M. Shalaby, Effect of silver and indium addition on mechanical properties and indentation creep behavior of rapidly solidified Bi–Sn based lead-free solder alloys. Mater. Sci. Eng., A 560, 86–95 (2013)

    Article  Google Scholar 

  24. F.A. El-Salam, A.M.A. El-Khalek, R.H. Nada et al., Effect of silver addition on the creep parameters of Sn–7 wt% Bi alloy during transformation. Mater. Char. 59(1), 9–17 (2008)

    Article  Google Scholar 

  25. S. Ridout, C. Bailey, Review of methods to predict solder joint reliability under thermo-mechanical cycling. Fatigue Fract. Eng. Mater. Struct. 30(5), 400–412 (2007)

    Article  Google Scholar 

  26. C. Kanchanomai, Y. Miyashita, Y. Mutoh, Low cycle fatigue behavior and mechanisms of a eutectic Sn–Pb solder 63Sn/37Pb. Int. J. Fatigue 24(6), 671–683 (2002)

    Article  Google Scholar 

  27. L. Zhang, S.B. Xue, L.L. Gao et al., Effects of rare earths on properties and microstructures of lead-free solder alloys. J. Mater. Sci.: Mater. Electron. 20(8), 685–694 (2009)

    Google Scholar 

  28. H.G. Song, J.W. Morris, F. Hua, The creep properties of lead-free solder joints. JOM 54(6), 30–32 (2002)

    Article  Google Scholar 

  29. Wiese S, Schubert A, Walter H, et al. Constitutive behaviour of lead-free solders vs. lead-containing solders-experiments on bulk specimens and flip-chip joints. in Proceedings on 51st IEEE Electronic Components and Technology Conference, 2001, 2001, pp 890–902

  30. Cho M G, Park Y S, Seo S K, et al. Effect of Ag addition on the ripening growth of grains at the interface of Sn-xAg-0.5 Cu/Cu during a reflow. IEEE Trans. Compon. Packag. Manuf. Technol. 1(12), 1939–1946 (2011)

  31. J. Feng, S. Xue, J. Lou et al., Microstructure and properties of Cu/Al joints brazed with Zn–Al filler metals. Trans. Nonferrous Metals Soc. China 22(2), 281–287 (2012)

    Article  Google Scholar 

  32. Y. Murakami, N. Nakanishi, S. Kachi, Superlattice formation in the ternary β phase alloys—I. AuxCu55−xZn and AgxCu53−xZn alloys. Acta Metall. 19(2), 93–96 (1971)

    Article  Google Scholar 

  33. P.M. Roberts, Recent developments in cadmium-free silver brazing alloys. Weld. J. 57(10), 23–30 (1978)

    Google Scholar 

  34. S.B. Xue, Effect of tin and indium in silver filler metal and its mechanism. Weld. Join. 11(012), 28–31 (1998)

    Google Scholar 

  35. Z.R. Li, N. Jiao, J.C. Feng et al., Effect of alloying elements on microstructure and property of AgCuZnSn brazing alloy. Trans China Weld. Inst. 29(3), 65–68 (2008)

    Google Scholar 

  36. Y. Li, C. Wang, Z. Peng et al., Dissolution behavior of Cu in Cu–Ag and Cu–P brazing alloys using weld brazing. Trans. Nonferrous Metals Soc. China 21, 394–399 (2011)

    Article  Google Scholar 

  37. A. Hasap, N. Noraphaiphipaksa, C. Kanchanomai, The microstructure and strength of copper alloy brazing joints. Weld. J. 93(4), 116–123 (2014)

    Google Scholar 

  38. Y.H. Zhu, S. To, W.B. Lee et al., Effects of dynamic electropulsing on microstructure and elongation of a Zn–Al alloy. Mater. Sci. Eng., A 501(1), 125–132 (2009)

    Article  Google Scholar 

  39. R.K. Shiue, S.K. Wu, C.H. Chan, The interfacial reactions of infrared brazing Cu and Ti with two silver-based braze alloys. J. Alloy. Compd. 372(1), 148–157 (2004)

    Article  Google Scholar 

  40. M.B. Karamış, A. Taşdemirci, F. Nair, Microstructural analysis and discontinuities in the brazed zone of copper tubes. J. Mater. Process. Technol. 141(3), 302–312 (2003)

    Article  Google Scholar 

  41. M. Naka, K.M. Hafez, Applying of ultrasonic waves on brazing of alumina to copper using Zn–Al filler alloy. J. Mater. Sci. 38(16), 3491–3494 (2003)

    Article  Google Scholar 

  42. M.F. Arenas, V.L. Acoff, R.G. Reddy, Physical properties of selected brazing filler metals. Sci. Technol. Weld. Join. 9(5), 423–429 (2004)

    Article  Google Scholar 

  43. M.G. Li, D.Q. Sun, X.M. Qiu et al., Effects of silver based filler metals on microstructure and properties of laser brazed joints between TiNi shape memory alloy and stainless steel. Sci. Technol. Weld. Join. 12(2), 183–188 (2007)

    Article  Google Scholar 

  44. Z. Xu, J. Yan, C. Wang et al., Substrate oxide undermining by a Zn–Al alloy during wetting of alumina reinforced 6061 Al matrix composite. Mater. Chem. Phys. 112(3), 831–837 (2008)

    Article  Google Scholar 

  45. Y.P. Mamunya, H. Zois, L. Apekis et al., Influence of pressure on the electrical conductivity of metal powders used as fillers in polymer composites. Powder Technol. 140(1), 49–55 (2004)

    Article  Google Scholar 

  46. Puttlitz K J, Stalter K A. Handbook of Lead-Free Solder Technology for Microelectronic Assemblies (CRC Press, Boca Raton, 2004)

  47. X.P. Han, S.B. Xue, Z.M. Lai et al., Research status and prospect of cadmium free silver filler metal for brazing. Weld. Join. 6, 19 (2007)

    Google Scholar 

  48. L. Zhang, S.B. Xue, L.L. Gao et al., Microstructure and creep properties of Sn–Ag–Cu lead-free solders bearing minor amounts of the rare earth cerium. Solder. Surface Mount Technol. 22(2), 30–36 (2010)

    Article  Google Scholar 

  49. D.Q. Yu, J. Zhao, L. Wang, Improvement on the microstructure stability, mechanical and wetting properties of Sn–Ag–Cu lead-free solder with the addition of rare earth elements. J. Alloy. Compd. 376(1), 170–175 (2004)

    Article  Google Scholar 

  50. Z.M. Lai, S.B. Xue, X.P. Han et al., Study on microstructure and property of brazed joint of AgCuZn–X (Ga, Sn, In, Ni) brazing alloy. Rare Metal Mater. Eng. 39(3), 397–400 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This project is supported by National Natural Science Foundation of China (Grant No.51375233) and supported by the Key Laboratory of Advanced Welding Technology of Jiangsu Province, China (JSAWT-14-04). This work is also supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song-bai Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Xue, Sb. Effect of Ag on the properties of solders and brazing filler metals. J Mater Sci: Mater Electron 27, 1–13 (2016). https://doi.org/10.1007/s10854-015-3747-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3747-z

Keywords

Navigation