Skip to main content
Log in

Studies of structural, dielectric, electrical and ferroelectric characteristics of BiFeO3 and (Bi0.5K0.5)(Fe0.5Ta0.5)O3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The polycrystalline samples of BiFeO3 and (Bi0.5K0.5)(Fe0.5Ta0.5)O3 were prepared using a solid-state reaction technique. Using room-temperature X-ray diffraction data the formation of a single-phase hexagonal crystal system of (Bi0.5K0.5)(Fe0.5Ta0.5)O3 was confirmed. Scanning electron micrographs confirming the polycrystalline nature of the samples contain uniform grain distribution of unequal size. Temperature-frequency dependence of dielectric studies does not show any dielectric anomaly or phase transition in the materials in the studied temperature range. However, existence of hysteresis loop at room temperature has confirmed the known ferroelectricity of BiFeO3 and (Bi0.5Li0.5)(Fe0.5Ta0.5)O3. Analysis of complex impedance data has provided the amount of contributions of grain/grain boundary in the materials resistance. This analysis also shows that that the system has Negative temperature coefficient of resistance type behaviour. The electrical conductivity and relaxation characteristics of the system suggest the existence of thermally activated process, and their values suggest that the system has similar type of conductivity and relaxation species. The frequency dependence of the ac conductivity obeys Jonscher’s universal power law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M. Fiebig, J. Phys. D: Appl. Phys. 38, R123 (2005)

    Article  Google Scholar 

  2. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)

    Article  Google Scholar 

  3. S.-W. Cheong, M. Mostovoy, Nature Mater. 6, 13 (2007)

    Article  Google Scholar 

  4. R. Ramesh, N.A. Spaldin, Nature Mater. 6, 21 (2007)

    Article  Google Scholar 

  5. I. Sosnowska, T. Peterlin-Neumaier, E. Steichele, J. Phys. C15, 4835 (1982)

    Google Scholar 

  6. Y.F. Popov, A.K. Zvezdin, G.P. Vorob’ev, A.M. Kadomtseva, V.A. Murashev, D.N. Rakov, JETP Lett. 57, 69 (1993)

    Google Scholar 

  7. F. Kubel, H. Schimid, Acta Crystallogr. B 46, 698–702 (1990)

    Article  Google Scholar 

  8. P. Fischer, M. Polomska, I. Sosnowska, M. Szymanski, J. Phys. Solid State Phys. 13, 1931–1940 (1980)

    Article  Google Scholar 

  9. C. Michel, J.-M. Moreau, G.-D. Achenbach, R. Gerson, W.J. James, Solid State Commun. 7, 701–704 (1969)

    Article  Google Scholar 

  10. F. Kubel, H. Schmid, Acta Cryst. B 46, 698 (1990)

    Article  Google Scholar 

  11. S.M. Skinner, I.E.E.E. Trans, Parts Mater. Package 6, 68 (1970)

    Article  Google Scholar 

  12. P. Fischer, M. Polomska, I. Sosnowska, M. Szymanski, J. Phys. C 13, 1931 (1980)

    Article  Google Scholar 

  13. J.B. Neaton, C. Ederer, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, Phys. Rev. B 71, 014113 (2005)

    Article  Google Scholar 

  14. J.R. Teague, R. Gerson, W.J. James, Solid State Commun. 8, 1073 (1970)

    Article  Google Scholar 

  15. T. Higuchi, W. Sakamoto, N. Itoh, T. Shimura, T. Hattori, T. Yogo, Appl. Phys. Express. 1, 011502 (2008)

    Article  Google Scholar 

  16. V.R. Palkar, J. John, R. Pinto, Appl. Phys. Lett. 80, 1628 (2002)

    Article  Google Scholar 

  17. Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.M. Liu, Z.G. Liu, Appl. Phys. Lett. 84, 1731 (2004)

    Article  Google Scholar 

  18. A. Mukherjee, S. Basu, L.A.W. Green, N.T.K. Thanh, M. Pal, J. Mater. Sci.: Mater. Electron. 50, 1891–1900 (2015)

    Article  Google Scholar 

  19. I.B. Shameem Banu, A. Sathiya Priya, P. Komalavalli, G. Shanmuganathan, J. Mater. Sci.: Mater. Electron. 26, 98–102 (2015)

    Google Scholar 

  20. Y.C. Hu, Z.Z. Jiang, K.G. Gao, G.F. Cheng, J.J. Ge, X.M. Lv, X.S. Wu, Chem. Phys. Lett. 534, 62–66 (2012)

    Article  Google Scholar 

  21. M.K.P. Sahoo, R.N.P. Choudhary, Mater. Lett. 67, 308–310 (2012)

    Article  Google Scholar 

  22. W.S. Baer, J. Phys. Chem. Solids 28, 677 (1967)

    Article  Google Scholar 

  23. W.R. Hosler, H.P.R. Frederikse, Solid State Commun. 7, 1443 (1969)

    Article  Google Scholar 

  24. M. Tsukioka, J. Tanaka, Y. Miyazawa, J. Phys. Soc. Jpn. 46, 1785 (1979)

    Article  Google Scholar 

  25. G.O. Deputy, R.W. Vest, J. Am. Ceram. Soc. 61, 321 (1978)

    Article  Google Scholar 

  26. E. Wu, POWD, an interactive power diffraction data interpretation and indexing program V2.1 (School of Physical Sciences, Flinder University of South Australia, Bedford Park, 1989)

    Google Scholar 

  27. G. Catalan, J.F. Scott, Adv. Mater. 21, 2463–2485 (2009)

    Article  Google Scholar 

  28. S. Mohanty, R.N.P. Choudhary, J. Elec. Mater. (2015). doi:10.1007/s11664-015-3789-2

    Google Scholar 

  29. R. Gerhardt, J. Phys. Chem. Solids 55, 1491–1506 (1994)

    Article  Google Scholar 

  30. S. Sen, R.N.P. Choudhary, Mater. Chem. Phys. 87, 256–263 (2004)

    Article  Google Scholar 

  31. R. Bharti, R. Singh, B.M. Wankly, J. Mat. Sci. 16, 775–779 (1981)

    Article  Google Scholar 

  32. J. Maier, J. Eur. Ceram. Soc. 24, 1343–1347 (2004)

    Article  Google Scholar 

  33. J. Maier, Solid State Ionics 157, 327–334 (2003)

    Article  Google Scholar 

  34. S. Mohanty, R.N.P. Choudhary, J. Mater. Sci.: Mater. Electron. 25, 1180–1187 (2014)

    Google Scholar 

  35. M.A.L. Nobre, S. Langfredi, Phys. Chem. Solids 62, 20–24 (1999)

    Google Scholar 

  36. J.R. Macdonald, Solid State Ionics 13, 147 (1984)

    Article  Google Scholar 

  37. A. Shukla, R.N.P. Choudhary, J. Mater. Sci. 47, 5074–5085 (2012)

    Article  Google Scholar 

  38. S. Lanfredi, P.S. Saia, R. Lebullenger, A.C. Hernandes, Solid State Ionics 146, 329–339 (2002)

    Article  Google Scholar 

  39. A.R. James, S. Priya, K. Uchino, K. Srinivas, J. Appl. Phys. 90, 3504–3508 (2001)

    Article  Google Scholar 

  40. P. Victor, S. Bhattacharyya, S.B. Krupanidhi, J. Appl. Phys. 94, 5135–5149 (2003)

    Article  Google Scholar 

  41. A. Molak, M. Paluch, S. Pawlus, J. Klimozantko, Z. Ujma, I. Gruszka, J. Phys. D Appl. Phys. 38, 1439–1450 (2005)

    Article  Google Scholar 

  42. S. Mohanty, R.N.P. Choudharyn, R. Padhee, B.N. Parida, Ceram. Int. 40, 9017–9025 (2014)

    Article  Google Scholar 

  43. M.A.L. Nobre, S. Lanfredi, J. Appl. Phys. 93, 5557 (2003)

    Article  Google Scholar 

  44. A.R. West, D.C. Sinclair, N. Hirose, J. Electroceram. 1, 65–71 (1997)

    Article  Google Scholar 

  45. S. Bhattacharya, S.S.N. Bharadwaja, S.B. Krupanidhi, J. Appl. Phys. 88, 4294–4302 (2000)

    Article  Google Scholar 

  46. A.R. James, C. Prakash, G. Prasad, J. Phys. D Appl. Phys. 39, 1635–1641 (2006)

    Article  Google Scholar 

  47. M. Li, A. Feteira, D.C. Sinclair, J. Appl. Phys. 98, 084101 (2005)

    Article  Google Scholar 

  48. S. Mohanty, R.N.P. Choudhary, B.N. Parida, R. Padhee, Appl. Phys. A. 116, 1833–1840 (2014)

    Article  Google Scholar 

  49. N.K. Karan, D.K. Pradhan, R. Thomas, B. Natesan, R.S. Katiyar, Solid State Ionics 179, 689 (2008)

    Article  Google Scholar 

  50. A.K. Jonscher, Nature 267, 673 (1977)

    Article  Google Scholar 

  51. R.N.P. Choudhary, D.K. Pradhan, C.M. Tirado, G.E. Bonilla, R.S. Katiyar, J. Mater. Sci. 42, 7423 (2007)

    Article  Google Scholar 

  52. O. Raymond, R. Font, N. Suárez-Almodovar, J. Portelles, J.M. Siqueiros, J. Appl. Phys. 97, 084108 (2005)

    Article  Google Scholar 

  53. R.N.P. Choudhary, U. Bhunia, J. Mater. Sci. 37, 5177–5182 (2002)

    Article  Google Scholar 

  54. O.P. Thakur, C. Prakash, Phase Transit. 76, 567–574 (2003)

    Article  Google Scholar 

  55. T.-H. Wang, C.-S. Tu, Y. Ding, T.-C. Lin, C.-S. Ku, W.-C. Yang, H.-H. Yu, K.-T. Wu, Y.-D. Yao, H.-Y. Lee, Curr. Appl. Phys. 11, 240–243 (2011)

    Article  Google Scholar 

  56. Z.Z. Ma, Z.M. Tian, J.Q. Li, C.H. Wang, S.X. Huo, H.N. Duan, S.L. Yuan, Solid State Sci. 13, 2196–2200 (2011)

    Article  Google Scholar 

  57. H. Amorin, C. Correas, P. Ramos, T. Hungria, A. Castro, M. Alguero, Appl. Phys. Lett. 101, 172908 (2012)

    Article  Google Scholar 

  58. R. Zuo, C. Ye, X. Fang, J. Phys. Chem. Solids 69, 230–235 (2008)

    Article  Google Scholar 

  59. S.K. Pradhan, B.K. Roul, Phys. B 406, 3313–3317 (2011)

    Article  Google Scholar 

  60. T.-H. Wang, C.-S. Tu, H.-Y. Chen, Y. Ding, T.C. Lin, Y.-D. Yao, V.H. Schmidt, K.-T. Wu, J. Appl. Phys. 109, 044101 (2011)

    Article  Google Scholar 

  61. M. Kumar, S. Shankar, O. Parkash, O.P. Thakur, J. Mater. Sci.: Mater. Electron. 25, 888–896 (2015)

    Google Scholar 

Download references

Acknowledgments

Authors are grateful to Utakal University and IIT Roorkee for some help in XRD and SEM experiments respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suchismita Mohanty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanty, S., Kumar, A. & Choudhary, R.N.P. Studies of structural, dielectric, electrical and ferroelectric characteristics of BiFeO3 and (Bi0.5K0.5)(Fe0.5Ta0.5)O3 . J Mater Sci: Mater Electron 26, 9640–9648 (2015). https://doi.org/10.1007/s10854-015-3630-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3630-y

Keywords

Navigation