Skip to main content
Log in

An efficient method to functionalize soybean protein fiber for fuse wire application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

An etchant-free surface pre-treatment process for the preparation of copper/soybean protein fiber (Cu/SPF) via electroless plating was studied. A tight, dense and continuous structure of copper coating was obtained in this process. 3-Aminopropyltrimethoxysilane molecule was successfully grafted onto the SPF via a simple coupling reaction. In addition, Au, Ag or Pd nanoparticles were immobilized on the SPF substrate as catalyst sites for electroless plating. All the copper coatings via different metal activation were firmly adhered to the SPF substrate, as determined by an adhesive scotch®-tape test. The measurement of the electrothermal property of the Cu/SPF composites was carried out by a home-made direct current circuit. The composite from Ag activation process held a relatively higher rated current and a lower melting point, which indicated that it was more suitable to be made as the fuse wire than the composites from Au or Pd activation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T.B. Sudha, P. Thanikaivelan, M. Ashokkumar, B. Chandrasekaran, Appl. Biochem. Biotechnol. 163, 247 (2011)

    Article  Google Scholar 

  2. A. Gonzalez, C.I.A. Igarzabal, Food Hydrocoll. 43, 777 (2015)

    Article  Google Scholar 

  3. A. Jensen, L.T. Lim, S. Barbut, M. Marcone, LWT-Food Sci. Technol. 60, 162 (2015)

    Article  Google Scholar 

  4. X.J. Tang, C.L. Bi, C.X. Han, B.G. Zhang, Mater. Lett. 63, 840 (2009)

    Article  Google Scholar 

  5. X.Y. Geng, Q. Qiang, J. Zhao, J.J. Yang, Z.L. Wang, J. Adhes. Sci. Technol. 29, 705 (2015)

    Article  Google Scholar 

  6. L.L. Xue, Q. Liang, Y.X. Lu, J. Mater. Sci. Mater. Electron. 24, 2211 (2013)

    Article  Google Scholar 

  7. G.P. Jin, Y. Fu, X.C. Bao, X.S. Feng, Y. Wang, W.H. Liu, J. Appl. Electrochem. 44, 621 (2014)

    Article  Google Scholar 

  8. Y.X. Lu, L.L. Xue, Compos. Sci. Technol. 72, 828 (2012)

    Article  Google Scholar 

  9. W. Chen, J. Wang, T. Wang, J.P. Wang, R.X. Xu, X.L. Yang, J. Wuhan Univ. Technol. 29, 1165 (2014)

    Article  Google Scholar 

  10. Z.F. Zhao, Y.S. Zhou, C.Q. Zhang, Z.Y. Wang, J. Appl. Polym. Sci. 132, 41873 (2015)

    Google Scholar 

  11. P.A. Vasilevskii, S.A. Moskalev, L.M. Zheleznyak, S.A. Golovanov, Metallurgist 58, 831 (2015)

    Article  Google Scholar 

  12. T.A. Lassissi, N.S. Hettiarachchy, S.J. Rayaprolu, A. Kannan, M. Davis, Food Res. Int. 64, 598 (2014)

    Article  Google Scholar 

  13. C.L. Lee, K. Tsujino, Y. Kanda, S. Ikeda, M. Matsumura, J. Mater. Chem. 18, 1015 (2008)

    Article  Google Scholar 

  14. Y. Fujiwara, Y. Kobayashi, T. Sugaya, A. Koishikawa, Y. Hoshiyama, H. Miyake, J. Electrochem. Soc. 157, D211–D216 (2010)

    Article  Google Scholar 

  15. L.J. Wang, L.L. Sun, J. Li, Bioresources 6, 3493 (2011)

    Google Scholar 

  16. Y.X. Lu, Q. Liang, W.L. Li, Mater. Chem. Phys. 140, 553 (2013)

    Article  Google Scholar 

  17. Z.C. Liu, Q.G. He, P.F. Xiao, B. Liang, J.X. Tan, N.Y. He, Z.H. Lu, Mater. Chem. Phys. 82, 301 (2003)

    Article  Google Scholar 

  18. C. Jung, J. Mol. Recognit. 13, 325 (2000)

    Article  Google Scholar 

  19. B. Henkel, E. Bayer, J. Pept. Sci. 4, 461 (1998)

    Article  Google Scholar 

  20. Z. Jia, Y.G. Yang, Polym. Bull. 59, 13 (2007)

    Article  Google Scholar 

  21. G. Yang, L. Zhang, H. Han, J. Zhou, J. Appl. Polym. Sci. 81, 3260 (2001)

    Article  Google Scholar 

  22. Y. Liu, J. Li, L. Yang, Z. Shi, J. Macromol. Sci. A 41, 305 (2004)

    Article  Google Scholar 

  23. R.H. Guo, S.Q. Jiang, C.W.M. Yuen, M.C.F. Ng, J. Mater. Sci. Mater. Electron. 20, 735 (2009)

    Article  Google Scholar 

  24. R.C. Haddon, Pure Appl. Chem. 65, 11 (1993)

    Article  Google Scholar 

  25. U. Fawad, M. Oh, H. Park, S. Kim, H.J. Kim, J. Alloy. Compd. 610, 281 (2014)

    Article  Google Scholar 

  26. G.Q. Shi, W.L. Li, Y.X. Lu, Surf. Coat. Technol. 253, 221 (2014)

    Article  Google Scholar 

  27. X.Y. Cui, D.A. Hutt, P.P. Conway, Thin Solid Films 520, 6095 (2012)

    Article  Google Scholar 

  28. L.Z. Di, B. Liu, J.J. Song, D. Shan, D.A. Yang, Appl. Surf. Sci. 257, 4272 (2011)

    Article  Google Scholar 

  29. D. Bhardwaj, H. Soda, A. McLean, Mater. Charact. 61, 882 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 61371019) and the Shanghai Civil-military Integration Project (No. 140217).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinxiang Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Lu, Y. An efficient method to functionalize soybean protein fiber for fuse wire application. J Mater Sci: Mater Electron 26, 8616–8624 (2015). https://doi.org/10.1007/s10854-015-3536-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3536-8

Keywords

Navigation