Skip to main content
Log in

Hierarchical Co3O4 nanoflowers assembled from nanosheets: facile synthesis and their application in supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, three-dimensional hierarchical Co3O4 nanoflowers have been synthesized through a redox precipitation approach followed by calcination in air. The as-synthesized hierarchical Co3O4 nanoflowers are 250 nm in size, and composed of numerous self-assembled porous ultrathin nanosheets with a thickness of 10 nm. According to the experimental results, a possible formation mechanism for hierarchical Co3O4 nanoflowers is proposed. When evaluated as an electrode material for supercapacitors, hierarchical Co3O4 nanoflowers exhibit a high specific capacitance of 198 F g−1 at a current density of 1 A g−1 and cycling stability (94.6 % capacity retention after 1500 cycles) in 2 M KOH electrolyte. This remarkable electrochemical performance can be ascribed to their unique structural characteristics such as open flower-like architectures and ultrathin porous nanosheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T.L. Breen, J. Tien, S.J. Oliver, T. Hadzic, G. Whitesides, Science 284, 948 (1999)

    Article  Google Scholar 

  2. R.K. Joshi, J.J. Schneider, Chem. Soc. Rev. 41, 5285 (2012)

    Article  Google Scholar 

  3. J.M. Romo-Herrera, M. Terrones, H. Terrones, S. Dag, V. Meunier, Nano Lett. 7, 570 (2007)

    Article  Google Scholar 

  4. Y. Gong, S. Yang, L. Zhan, L. Ma, R. Vajtai, P.M. Ajayan, Adv. Funct. Mater. 24, 125 (2014)

    Article  Google Scholar 

  5. S.M. Jung, H.Y. Jung, M.S. Dresselhaus, Y.J. Jung, J. Kong, Sci. Rep. 2, 849 (2012)

    Google Scholar 

  6. D. Liu, X. Wang, D. He, T.D. Dao, T. Nagao, Q. Weng, D. Tang, X. Wang, W. Tian, D. Golberg, Y. Bando, Small 10, 2564 (2014)

    Article  Google Scholar 

  7. H. Jiang, P.S. Lee, C. Li, Energy Envion. Sci. 6, 41 (2013)

    Article  Google Scholar 

  8. H. Wang, A.L. Rogach, Chem. Mater. 26, 123 (2014)

    Article  Google Scholar 

  9. M.R. Alenezi, S.J. Henley, N.G. Emerson, S.R.P. Silva, Nanoscacle 6, 235 (2014)

    Article  Google Scholar 

  10. M. Cao, X. He, J. Chen, C. Hu, Cryst. Growth Des. 7, 170 (2007)

    Article  Google Scholar 

  11. B. Li, Y. Xie, Y. Xue, J. Phys. Chem. C 111, 12181 (2007)

    Article  Google Scholar 

  12. L.-S. Zhong, J.-S. Hu, H.-P. Liang, A.-M. Cao, W.-G. Song, L.-J. Wan, Adv. Mater. 18, 2426 (2006)

    Article  Google Scholar 

  13. S. Sun, X. Zhang, Y. Sun, S. Yang, X. Song, Z. Yang, Phys. Chem. Chem. Phys. 15, 10904 (2013)

    Article  Google Scholar 

  14. Y. Chen, J. Ma, L. Yu, Q. Li, T. Wang, CrystEngComm 14, 6170 (2012)

    Article  Google Scholar 

  15. X.W. Lou, Y. Wang, C. Yuan, J.Y. Lee, L.A. Archer, Adv. Mater. 18, 2325 (2006)

    Article  Google Scholar 

  16. K.N. Tu, U. Gösele, Appl. Phys. Lett. 86, 093111 (2005)

    Article  Google Scholar 

  17. J. Zhang, Y. Tang, K. Lee, M. Ouyang, Science 327, 1634 (2010)

    Article  Google Scholar 

  18. J. Rosen, G.S. Hutchings, F. Jiao, J. Am. Chem. Soc. 135, 4516 (2013)

    Article  Google Scholar 

  19. J. Park, X. Shen, G. Wang, Sens. Actuators, B 136, 494 (2009)

    Article  Google Scholar 

  20. W. Wen, J.-M. Wu, M.-H. Cao, Nanoscale 6, 12476 (2014)

    Article  Google Scholar 

  21. R. Tummala, R.K. Guduru, P.S. Mohanty, J. Power Sour. 209, 44 (2012)

    Article  Google Scholar 

  22. L. Wang, X. Liu, X. Wang, X. Yang, L. Lu, J. Mater. Sci. Mater. Electron. 22, 601 (2011)

    Article  Google Scholar 

  23. T. Zhu, J.S. Chen, X.W. Lou, J. Mater. Chem. 20, 7015 (2010)

    Article  Google Scholar 

  24. Y. Wang, Z. Zhong, Y. Chen, C.T. Ng, J. Lin, Nano Res. 4, 695 (2011)

    Article  Google Scholar 

  25. S. Xiong, C. Yuan, X. Zhang, B. Xi, Y. Qian, Chem. Eur. J. 15, 5320 (2009)

    Article  Google Scholar 

  26. L. Wang, X.H. Lin, X. Wang, X. Yang, L. Lu, Curr. Appl. Phys. 10, 1422 (2010)

    Article  Google Scholar 

  27. J.S. Chen, T. Zhu, Q.H. Hu, J. Gao, F. Su, S.Z. Qiao, X.W. Lou, ACS Appl. Mater. Inter. 2, 3628 (2010)

    Article  Google Scholar 

  28. H. Pang, F. Gao, Q. Chen, R. Liu, Q. Lu, Dalton Trans. 41, 5862 (2012)

    Article  Google Scholar 

  29. C.C. Li, X.M. Yin, Q.H. Li, L.B. Chen, T.H. Wang, Chem. Eur. J. 17, 1596 (2011)

    Article  Google Scholar 

  30. D. Ge, H. Geng, J. Wang, J. Zheng, Y. Pan, X. Cao, H. Gu, Nanoscale 6, 9689 (2014)

    Article  Google Scholar 

  31. G. Duan, W. Cai, Y. Luo, F. Sun, Adv. Funct. Mater. 17, 644 (2007)

    Article  Google Scholar 

  32. C. Lin, J.A. Ritter, B.N. Popov, J. Electrochem. Soc. 145, 4097 (1998)

    Article  Google Scholar 

  33. F. Meng, Z. Fang, Z. Li, W. Xu, M. Wang, Y. Liu, J. Zhang, W. Wang, D. Zhao, X. Guo, J. Mater. Chem. A 1, 7235 (2013)

    Article  Google Scholar 

  34. W. Yang, Z. Gao, J. Ma, J. Wang, B. Wang, L. Liu, Electrochim. Acta 112, 378 (2013)

    Article  Google Scholar 

  35. J. Jiang, W. Shi, S. Song, Q. Hao, W. Fan, X. Xia, X. Zhang, Q. Wang, C. Liu, D. Yan, J. Power Sour. 248, 1281 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial supports from the National Natural Science Foundation of China (Grant No. 21206025) and the Natural Science Foundation of Hebei Province (Grant No. B2013402008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aifeng Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 208 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Che, H., Liu, A. Hierarchical Co3O4 nanoflowers assembled from nanosheets: facile synthesis and their application in supercapacitors. J Mater Sci: Mater Electron 26, 4097–4104 (2015). https://doi.org/10.1007/s10854-015-2951-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2951-1

Keywords

Navigation