Skip to main content
Log in

Effect of BaTiO3 doping on the structural, electrical and magnetic properties of BiFeO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

(1 − x)BiFeO3xBaTiO3 (x = 0.00, 0.10, 0.20, 0.25 and 0.30) ceramics have been fabricated by the solid state reaction method. The effects of BaTiO3 (BTO) doping on the structural, electrical and magnetic properties of BiFeO3 (BFO) ceramics have been investigated. It is found that BTO doping can affect the structure of the BFO ceramics, and the multiferroic properties of BFO ceramics can hence be improved. The XRD measurements reveal that the structure of BFO was changed from rhombohedral to pseudo-cubic and the impurity phases were decreased both due to BTO doping. Analysis of microstructure indicates that the BTO doping can hinder the grain growth. Electrical measurements show that BFO doping improves the ferroelectric property due to the significantly decrease of the electric leakage density and the oxygen vacancy concentrations. Magnetic measurements indicate that the antiferromagnetism behavior of BFO is turned into a weak ferromagnetism state by addition of BTO. The related mechanism is also discussed in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K. Chakrabarti, K. Das, B. Sarkar, S. Ghosh, S.K. De, G. Sinha, J. Lahtinen, Appl. Phys. Lett. 101, 042401 (2012)

    Article  Google Scholar 

  2. M. Kumar, S. Shankar, O. Parkash, O.P. Thakur, J. Mater. Sci.: Mater. Electron. 25, 888 (2014)

    Google Scholar 

  3. J.G. Wu, J. Wang, D.Q. Xiao, J.G. Zhu, ACS Appl. Mater. Interfaces 4, 1182 (2012)

    Article  Google Scholar 

  4. F. Azough, R. Freer, M. Thrall, R. Cernik, F. Tuna, D. Collison, J. Eur. Ceram. Soc. 30, 727 (2010)

    Article  Google Scholar 

  5. S. Pattanayak, R.N.P. Choudhary, D. Pattanayak, J. Mater. Sci.: Mater. Electron. 25, 3854 (2014)

    Google Scholar 

  6. J.L. Xu, D. Xie, C. Yin, T.T. Feng, X.W. Zhang, G. Li, H.M. Zhao, Y.F. Zhao, S. Ma, T.L. Ren, Y.J. Guan, X.S. Gao, Y.G. Zhao, J. Appl. Phys. 114, 154103 (2013)

    Article  Google Scholar 

  7. M. Kumar, P.C. Sati, S. Chhoker, J. Mater. Sci.: Mater. Electron. 25, 5366 (2014)

    Google Scholar 

  8. J. Liu, M.Y. Li, L. Pei, J. Wang, Z.Q. Hu, X. Wang, X.Z. Zhao, EPL 89, 57004 (2010)

    Article  Google Scholar 

  9. R. Rai, I. Bdikin, M.A. Valente, A.L. Kholkin, Mater. Chem. Phys. 119, 539 (2010)

    Article  Google Scholar 

  10. Q.M. Hang, Z.B. Xing, X.H. Zhu, M. Yu, Y. Song, J.M. Zhu, Z.G. Liu, Ceram. Int. 38S, S411 (2012)

    Article  Google Scholar 

  11. H. Singh, A. Kumar, K.L. Yadav, Mater. Sci. Eng., B 176, 540 (2011)

    Article  Google Scholar 

  12. H. Dai, Z. Chen, R. Xue, T. Li, H. Liu, Y. Wang, Appl. Phys. A 111, 907 (2013)

    Article  Google Scholar 

  13. C. Yang, J.S. Jiang, C.M. Wang, W.G. Zhang, J. Phys. Chem. Solids 73, 115 (2012)

    Article  Google Scholar 

  14. X.J. Xi, S.Y. Wang, W.F. Liu, H.J. Wang, F. Guo, X. Wang, J. Gao, D.J. Li, J. Magn. Magn. Mater. 355, 259 (2014)

    Article  Google Scholar 

  15. M. Kumar, S. Shankar, R.K. Kotnala, O. Parkash, J. Alloy. Compd. 577, 222 (2013)

    Article  Google Scholar 

  16. P.C. Sati, M. Arora, S. Chauhan, M. Kumar, S. Chhoker, Ceram. Int. 40, 7805 (2014)

    Article  Google Scholar 

  17. J.A. Dean, Lange’s handbook of chemistry (McGraw-Hill, New York, 1999)

    Google Scholar 

  18. Y. Li, J. Yu, J. Li, C. Zheng, Y. Wu, Y. Zhao, M. Wang, Y. Wang, J. Mater. Sci.: Mater. Electron. 22, 323 (2011)

    Google Scholar 

  19. P. Sharma, V. Verma, J. Magn. Magn. Mater. 374, 18 (2015)

    Article  Google Scholar 

  20. R.A.M. Gotardo, D.S.F. Viana, M. Olzon-Dionysio, S.D. Souza, D. Garcia, J.A. Eiras, M.F.S. Alves, L.F.C. otica, I.A. Santos, A.A. Coelho, J. Appl. Phys. 112, 104112 (2012)

    Article  Google Scholar 

  21. Z.Z. Ma, Z.M. Tian, J.Q. Li, C.H. Wang, S.X. Huo, H.N. Duan, S.L. Yuan, Solid State Sci. 13, 2196 (2011)

    Article  Google Scholar 

  22. S.A. Ivanov, P. Nordblad, R. Tellgren, C. Ritter, Solid State Sci. 12, 115 (2010)

    Article  Google Scholar 

  23. F.P. Gheorghiu, A. Ianculescu, P. Postolache, N. Lupu, M. Dobromir, D. Luca, L. Mitoseriu, J. Alloy. Compd. 506, 862 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Nos. 11305142, 11175159), Zhengzhou Administration of Science and Technology of Henan Province of China (No. 131PPTGG411-10), and Key Members of the Outstanding Young Teacher of Zhengzhou University of Light Industry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. P. Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, H.Y., Chen, J., Li, T. et al. Effect of BaTiO3 doping on the structural, electrical and magnetic properties of BiFeO3 ceramics. J Mater Sci: Mater Electron 26, 3717–3721 (2015). https://doi.org/10.1007/s10854-015-2890-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2890-x

Keywords

Navigation