Skip to main content
Log in

Enhancement in the optical and magnetic properties of ZnO:Co implanted by Gd3+ nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Rare-earth metal Gadolinium (Gd3+) co-doped with ZnO:Cobalt (Co) nanoparticles are fabricated by simple, quick and versatile chemical precipitation technique. Structural, optical and magnetic studies have been carried out for Gd co-doped ZnO:Co nanoparticles. The structural analysis shows that Gd co-doped samples are single phase of wurtzite structure, where the average crystallite size of the samples is found to be nanometric regime. The morphology and chemical composition of the nanoparticles were studied using scanning electron microscopy and energy dispersive spectroscopy. Scanning electron microscopic study shows increase in particle size. In photoluminescence spectra, Gd co-doped samples show a remarkably prominent blue shift in UV region with that of pure ZnO with an increase in the intensity of green emission. The broad green emission due to the oxygen vacancy related to defect centers is present below the conduction band introduced by the Gd impurities in ZnO nanoparticles. When compared to the Co doped ZnO, Gd with ZnO:Co exhibits a clear ferromagnetism at room temperature with high coercivity. The unprecedented ferromagnetic property is attributed to the effective Ruderman–Kittel–Kasuya–Yosida exchanging interaction and change with dopant concentration Gd3+ into ZnO:Co nanoparticles. These results strongly suggest the future development of efficient luminescence and magnetic materials at normal room temperatures with Gd and Co doped ZnO nanostructures for spintronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. V.A. Fonoberov, K.A. Alim, A.A. Balandin, F. Xiu, J. Liu, Phys. Rev. B 73, 165317 (2006)

    Article  Google Scholar 

  2. D. Sridevi, K.V. Rajendran, Bull. Mater. Sci. 32, 165–168 (2009)

    Article  Google Scholar 

  3. R. Wahab, S.G. Ansari, Y.S. Kim, H.K. Seo, G.S. Kim, G. Khang, H.-S. Shin, Mater. Res. Bull. 42, 1640–1648 (2007)

    Article  Google Scholar 

  4. H.S. Hsu, J.C.A. Huang, Appl. Phys. Lett. 88, 242507 (2006)

    Article  Google Scholar 

  5. B. Pal, P.K. Giri, Int. J. Nanosci. 10(1), 1–5 (2011)

    Google Scholar 

  6. P.K. Sharma, R.K. Dutta, A.C. Pandey, J. Magn. Magn. Mater. 321, 4001–4005 (2009)

    Article  Google Scholar 

  7. A.K. Mishra, D. Das, Mater. Sci. Eng., B 171, 5–10 (2010)

    Article  Google Scholar 

  8. Z. ShaoMin, Y. HongLei, L. LiSheng, C. XiLiang, L. ShiYun, H. YaoMing, Y. RuiJian, L. Ning, Nanoscale Res. Lett. 5, 1284–1288 (2010)

    Article  Google Scholar 

  9. D. Jayakumar, H.G. Salunke, R.M. Kadam, M. Mohapatra, G. Yaswant, S. Kulshreshtha, Nanotechnology 17, 1278–1285 (2006)

    Article  Google Scholar 

  10. L.B. Duan, W.G. Chu, J. Yu, Y.C. Wang, L.N. Zhang, G.Y. Liu, J.K. Liang, G.D. Rao, J. Magn. Magn. Mater. 320, 1573 (2008)

    Article  Google Scholar 

  11. S. Yin, M.X. Xu, L. Yang, J.F. Liu, H. Rösner, H. Hahn, H. Gleiter, D. Schild, S. Doyle, T. Liu, T.D. Hu, E. Takayama-Muromachi, J.Z. Jian, Phys. Rev. B 73, 224408 (2006)

    Article  Google Scholar 

  12. M. Subramanian, P. Thakur, M. Tanemura, T. Hihara, V. Ganesan, T. Soga, K.H. Chae, R. Jayavel, T. Jimbo, J. Appl. Phys. 108, 053904 (2010)

    Article  Google Scholar 

  13. A. Mackoa, P. Malinsky, Z. Sofer, P. Simek, D. Sedmidubsky, M. Mikulics, R.A. Wilhelm, Nucl. Instrum. Methods Phys. Res. B 332, 80–84 (2014)

    Article  Google Scholar 

  14. S. Kumar, P.D. Sahare, J. Rare Earths 30(8), 761 (2012)

    Article  Google Scholar 

  15. J. Iqbal, X. Liu, H. Zhu, C. Pan, Y. Zhang et al., J. Appl. Phys. 106, 083515 (2009)

    Article  Google Scholar 

  16. J. Das, D.K. Mishra, D.R. Sahu, B.K. Roul, Phys. B 407, 3575–3579 (2012)

    Article  Google Scholar 

  17. R. Wang, A.J. Steckl, N. Nepal, J.M. Zavada, J. Appl. Phys. 107, 013901 (2010)

    Article  Google Scholar 

  18. M.H.N. Assadi, Y.B. Zhang, P. Photongkam, S. Li, J. Appl. Phys. 109, 013909 (2011)

    Article  Google Scholar 

  19. Q. Xu, H. Schmidt, H. Hochmuth, M. Lorenz, A. Setzer, P. Esquinazi, et al., J. Phys. D: Appl. Phys. 41, 105012 (2008)

  20. M. Saleem, S.A. Siddiqi, S.M. Ramay, S. Atiq, S. Naseem, Chin. Phys. Lett. 29(10), 106103 (2012)

    Article  Google Scholar 

  21. H.-W. Zhang, Z.-R. Wei, Z.-Q. Li, G.-Y. Dong, Mater. Lett. 61, 3605–3607 (2007)

    Article  Google Scholar 

  22. P. Photongkam, Y.B. Zhang, M.H.N. Assadi, S. Li, D. Yu, M. Ionescu, A.V. Pan, J. Appl. Phys. 107, 033909 (2010)

    Article  Google Scholar 

  23. A.A. Dakhel, M. El-Hiloa, J. Appl. Phys. 107, 123905 (2010)

    Article  Google Scholar 

  24. X. Ma, Z. Wang, Mater. Sci. Semicond. Process. 15, 227–231 (2012)

    Article  Google Scholar 

  25. P.P. Murmu, J. Kennedy, B.J. Ruck, A. Markwitz, G.V.M. Williams, S. Rubanov, Nucl Instrum Methods Phys Res B 272, 100–103 (2012)

    Article  Google Scholar 

  26. H. Shi, P. Zhang, S.-S. Li, J.-B. Xia, J. Appl. Phys. 106, 023910 (2009)

    Article  Google Scholar 

  27. B. Pal, P.K. Giri, J. Appl. Phys. 108, 084322 (2010)

    Article  Google Scholar 

  28. H. Li, Z. Zhang, J. Huang, R. Liu, Q. Wang, J. Alloys Compd. 550, 526–530 (2013)

    Article  Google Scholar 

  29. H. You, J. Yang, J.Y. Zhu, W.F. Xu, X.D. Tang, Appl. Surf. Sci. 258, 4455–4459 (2012)

    Article  Google Scholar 

  30. K. Yuan, Q.X. Yu, Q.Q. Gao, J. Wang, X.T. Zhang, Appl. Surf. Sci. 258, 3350–3353 (2012)

    Article  Google Scholar 

  31. B. Pal, P.K. Giri, J. Nanosci. Nanotechnol. 11, 1–8 (2011)

    Article  Google Scholar 

  32. C. Lan, B. Lin, Y. Jiang, C. Li, Mater. Lett. 132, 116–118 (2014)

    Article  Google Scholar 

  33. O. Opera, O.R. Vasile, G. Voicu, L. Craciun, E. Andronescu, Dig. J. Nanomater. Bio Struct. 7, 1757–1766 (2012)

    Google Scholar 

  34. S. Kumar, P.D. Sahare, Mater. Res. Bull. 51, 217–223 (2014)

    Article  Google Scholar 

  35. S. Paul, B. Choudhury, A. Choudhury, J. Alloys Compd. 601, 201–206 (2014)

    Article  Google Scholar 

  36. J. Lang, Q. Han, J. Yang, C. Li, X. Li, L. Yang, Y. Zhang, M. Gao, D. Wang, J. Cao, J. Appl. Phys. 107, 074302 (2010)

    Article  Google Scholar 

  37. X. Ma, Thin Solid Films 520, 5752–5755 (2012)

    Article  Google Scholar 

  38. H. Yoon, J.H. Wu, J.H. Min, J.S. Lee, J.-S. Ju, Y.K. Kim, J. Appl. Phys. 111, 07B523 (2012)

    Google Scholar 

  39. A. Majid, A. Dar, J. Magn. Magn. Mater. 368, 384–392 (2014)

    Article  Google Scholar 

  40. R.N. Aljawfi, S. Mollah, J. Magn. Magn. Mater. 323, 3126–3132 (2011)

    Article  Google Scholar 

  41. C.C. Wang, M. Liu, B.Y. Man, C.S. Chen, S.Z. Jiang et al., AIP Adv. 2, 012182 (2012)

    Article  Google Scholar 

  42. T. Thangeeswari, J. Velmurugan, M. Priya, J. Mater. Sci. Mater. Electron. 24, 4817–4826 (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Priya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thangeeswari, T., Priya, M. & Velmurugan, J. Enhancement in the optical and magnetic properties of ZnO:Co implanted by Gd3+ nanoparticles. J Mater Sci: Mater Electron 26, 2436–2444 (2015). https://doi.org/10.1007/s10854-015-2703-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2703-2

Keywords

Navigation