Skip to main content
Log in

Photoluminescent and magnetic characteristics of cobalt and manganese doped nanoscale zinc oxide

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, we investigated the magneto-optic properties of pure, cobalt-doped, and manganese-doped ZnO nanoparticles. Both pure and doped ZnO nanoparticles are prepared using the co-precipitation method. Examination of X-ray diffraction (XRD) patterns confirms the effective substitution of dopants ions (Co2+ and Mn2+) into ZnO hexagonal wurtzite crystal structure. The calculated microstrain and crystallite size values suggest lattice expansion and reduction of particle size to the nano range respectively. Further, a change in the morphology from rounded to the slightly elongated shape of the ZnO nanoparticles was observed with the doping. The absorption spectra showed a minor shift in the optical band gap value from 3.21 to 3.17 eV with doping in the ZnO. Further, the emission spectra of pure ZnO nanoparticles showed strong green emission with color coordinates (0.28, 0.40), and (0.30, 0.40) corresponding to emission wavelengths of 513.14 nm and 592.55 nm respectively. However, this emission gets drastically quenched by Co2+ and Mn2+ ions doping in ZnO. The magnetic properties investigated using a superconducting quantum interference device (SQUID) magnetometer exhibited a magnetic behavior change from diamagnetic to ferromagnetic for pure ZnO and doped ZnO nanoparticles respectively. Our study predicts that both cobalt and manganese doping in ZnO change the magnetic behavior of pure ZnO nanoparticles from diamagnetic to ferromagnetic but the emission properties of the pure ZnO also get quenched simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author Dr. Ishan Choudhary on reasonable request.

References

  1. L. Zhao, B. Huang, O. Olowolafe, I. Appelbaum, Bottom–up-fabricated oxide–metal–semiconductor spin-valve transistor. IEEE Electron Device Lett. 29(8), 892–894 (2008)

    Article  CAS  Google Scholar 

  2. S. Sugahara, M. Tanaka, A spin metal–oxide–semiconductor field-effect transistor using half-metallic-ferromagnet contacts for the source and drain. Appl. Phys. Lett. 84(13), 2307–2309 (2004)

    Article  CAS  Google Scholar 

  3. I. Choudhary, Deepak, Study on dielectric properties of PVP and Al2O3 thin films and their implementation in low-temperature solution-processed IGZO-based thin-film transistors. J. Mater. Sci.: Mater. Electron. 32(6), 7875–7888 (2021)

    CAS  Google Scholar 

  4. M.A. Dominguez, J.A. Luna-Lopez, S. Ceron, Low-temperature ultrasonic spray deposited aluminum doped zinc oxide film and its application in flexible Metal-Insulator-Semiconductor diodes. Thin Solid Films 645, 278–281 (2018)

    Article  CAS  Google Scholar 

  5. S. Abbas, M. Kumar, J. Kim, All metal oxide-based transparent and flexible photodetector. Mater. Sci. Semicond. Process. 88, 86–92 (2018)

    Article  CAS  Google Scholar 

  6. I. Choudhary, D. Deepak, Flexible substrate compatible solution processed P-N heterojunction diodes with indium-gallium-zinc oxide and copper oxide. Mater. Sci. Eng. B 218, 64–73 (2017)

    Article  CAS  Google Scholar 

  7. K. Komal, G. Gupta, M. Singh, B. Singh, Improved resistive switching of RGO and SnO2 based resistive memory device for non-volatile memory application. J. Alloys Compd. 923, 166196 (2022)

    Article  CAS  Google Scholar 

  8. K.K. Kashyap, L.H.J. Jire, P. Chinnamuthu, A perspective study on Au-nanoparticle adorned TiO2-nanowire for non-volatile memory devices. Mater. Today Commun. 33, 104469 (2022)

    Article  CAS  Google Scholar 

  9. D. Kumar, R. Aluguri, U. Chand, T.Y. Tseng, Metal oxide resistive switching memory: materials, properties and switching mechanisms. Ceram. Int. 43, S547–S556 (2017)

    Article  CAS  Google Scholar 

  10. K.G. Krishna, S. Parne, N. Pothukanuri, V. Kathirvelu, S. Gandi, D. Joshi, Nanostructured metal oxide semiconductor-based gas sensors: a comprehensive review. Sens. Actuators A 341, 113578 (2022)

    Article  CAS  Google Scholar 

  11. Q. Li, W. Zeng, Y. Li, Metal oxide gas sensors for detecting NO2 in industrial exhaust gas: recent developments. Sens. Actuators B 359, 131579 (2022)

    Article  CAS  Google Scholar 

  12. A. Singh, S. Sikarwar, A. Verma, B. Chandra Yadav, The recent development of metal oxide heterostructures based gas sensor, their future opportunities and challenges: a review. Sens. Actuators A 332, 113127 (2021)

    Article  CAS  Google Scholar 

  13. A. Chatterjee, A.V. Ravindra, G. Kiran Kumar, C. Rajesh, Improvement in the light conversion efficiency of silicon solar cell by spin coating of CuO, ZnO nanoparticles and CuO/ZnO mixed metal nanocomposite material. J. Indian Chem. Soc. 99(9), 100653 (2022)

    Article  CAS  Google Scholar 

  14. H.B. Uma, S. Ananda, M.S.V. Kumar, Electrochemical synthesis and characterization of CuO/ZnO/SnO nano photocatalyst: evaluation of its application towards photocatalysis, photo-voltaic and antibacterial properties. Chem. Data Collect. 32, 100658 (2021)

    Article  CAS  Google Scholar 

  15. B. Boro, B. Gogoi, B.M. Rajbongshi, A. Ramchiary, Nano-structured TiO2/ZnO nanocomposite for dye-sensitized solar cells application: a review. Renew. Sustain. Energy Rev. 81, 2264–2270 (2018)

    Article  CAS  Google Scholar 

  16. A.W. Alshameri, M. Owais, Antibacterial and cytotoxic potency of the plant-mediated synthesis of metallic nanoparticles Ag NPs and ZnO NPs: a review. OpenNano 8, 100077 (2022)

    Article  Google Scholar 

  17. H. Hong et al., Zinc oxide nanoparticles (ZnO-NPs) exhibit immune toxicity to crucian carp (Carassius carassius) by neutrophil extracellular traps (NETs) release and oxidative stress. Fish Shellfish Immunol. 129, 22–29 (2022)

    Article  CAS  Google Scholar 

  18. M. Nagarajan et al., Exposure to zinc oxide nanoparticles (ZnO-NPs) induces cardiovascular toxicity and exacerbates pathogenesis—role of oxidative stress and MAPK signaling. Chem. Biol. Interact. 351, 109719 (2022)

    Article  CAS  Google Scholar 

  19. S. Zeghoud et al., A review on biogenic green synthesis of ZnO nanoparticles by plant biomass and their applications. Mater. Today Commun. 33, 104747 (2022)

    Article  CAS  Google Scholar 

  20. M. Alavi, A. Nokhodchi, Synthesis and modification of bio-derived antibacterial Ag and ZnO nanoparticles by plants, fungi, and bacteria. Drug Discov. Today 26(8), 1953–1962 (2021)

    Article  CAS  Google Scholar 

  21. R.S. Rai et al., An eco-friendly approach on green synthesis, bio-engineering applications, and future outlook of ZnO nanomaterial: a critical review. Environ. Res. 221, 114807 (2022)

    Article  Google Scholar 

  22. A. El Golli, M. Fendrich, N. Bazzanella, C. Dridi, A. Miotello, M. Orlandi, Wastewater remediation with ZnO photocatalysts: green synthesis and solar concentration as an economically and environmentally viable route to application. J. Environ. Manag. 286, 112226 (2021)

    Article  Google Scholar 

  23. C.Y. Koo et al., Sol-gel derived Ga-In-Zn-O semiconductor layers for solution-processed thin-film transistors. J. Korean Phys. Soc. 53(1), 218–222 (2008)

    Article  CAS  Google Scholar 

  24. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432(7016), 488–492 (2004)

    Article  CAS  Google Scholar 

  25. A. Bala, R. Sehrawat, A.K. Sharma, P. Soni, Synthesis and optical properties of polythiophene-capped ZnS/Mn quantum dots. J. Mater. Sci.: Mater. Electron. 32(12), 16382–16391 (2021)

    CAS  Google Scholar 

  26. M. Ahmad, I. Ahmad, E. Ahmed, M.S. Akhtar, N.R. Khalid, Facile and inexpensive synthesis of Ag doped ZnO/CNTs composite: study on the efficient photocatalytic activity and photocatalytic mechanism. J. Mol. Liq. 311, 113326 (2020)

    Article  CAS  Google Scholar 

  27. I. Ahmad, M.S. Akhtar, E. Ahmed, M. Ahmad, Aluminium and cerium co-doped ZnO nanoparticles: facile and inexpensive synthesis and visible light photocatalytic performances. J. Rare Earths 39(2), 151–159 (2021)

    Article  CAS  Google Scholar 

  28. A. Shukla, V.K. Kaushik, D. Prasher, Growth and characterization of MgxZn1−xO thin films by aerosol-assisted chemical vapor deposition (AACVD). Electron. Mater. Lett. 10(1), 61–65 (2014)

    Article  CAS  Google Scholar 

  29. H. Wang et al., Low-temperature facile solution-processed gate dielectric for combustion derived oxide thin film transistors. Rsc Adv. 4(97), 54729–54739 (2014)

    Article  CAS  Google Scholar 

  30. Y.S. Rim, H.S. Lim, H.J. Kim, Low-temperature metal-oxide thin-film transistors formed by directly photopatternable and combustible solution synthesis. ACS Appl. Mater. Interfaces 5(9), 3565–3571 (2013)

    Article  CAS  Google Scholar 

  31. I. Choudhary, D. Deepak, Investigation of time-dependent stability and surface defects in sol–gel derived IGZO and IZO thin films. J. Sol-Gel Sci. Technol. 100, 132–146 (2021)

    Article  CAS  Google Scholar 

  32. N. Kamarulzaman, M.F. Kasim, R. Rusdi, Band gap narrowing and widening of ZnO nanostructures and doped materials. Nanoscale Res. Lett. 10(1), 346 (2015)

    Article  Google Scholar 

  33. L.J. Hoong, Y.C. Keat, A. Chik, T.P. Leng, Band structure and thermoelectric properties of inkjet printed ZnO and ZnFe2O4 thin films. Ceram. Int. 42(10), 12064–12073 (2016)

    Article  CAS  Google Scholar 

  34. H. Chen, Y. Qu, L. Sun, J. Peng, J. Ding, Band structures and optical properties of Ag and Al co-doped ZnO by experimental and theoretic calculation. Physica E 114, 113602 (2019)

    Article  CAS  Google Scholar 

  35. H. Ohara et al., 4.0-inch active-matrix organic light-emitting diode display integrated with driver circuits using amorphous In-Ga-Zn-oxide thin-film transistors with suppressed variation. Jpn. J. Appl. Phys. 49(3), 03 (2010)

    Google Scholar 

  36. Y. Nakajima et al., Development of 8-in. oxide-TFT-driven flexible AMOLED display using high-performance red phosphorescent OLED. J. Soc. Inform. Display 22(3), 137–143 (2014)

    Article  CAS  Google Scholar 

  37. D. Guruvammal, S. Selvaraj, S. Meenakshi Sundar, Structural, optical and magnetic properties of Co doped ZnO DMS nanoparticles by microwave irradiation method. J. Magn. Magn. Mater. 452, 335–342 (2018)

    Article  CAS  Google Scholar 

  38. Y. Koseoğlu, Y. Celaleddin Durmaz, R. Yilgin, Rapid synthesis and room temperature ferromagnetism of Ni doped ZnO DMS nanoflakes. Ceram. Int. 40(7), 10685–10691 (2014)

    Article  Google Scholar 

  39. K.C. Sebastian, M. Chawda, L. Jonny, D. Bodas, Structural, magnetic and optical studies of (Zn0.90Co0.05Ni0.05O) DMS. Mater. Lett. 64(20), 2269–2272 (2010)

    Article  CAS  Google Scholar 

  40. J. Sahu et al., Defects and oxygen vacancies tailored structural, optical and electronic structure properties of Co-doped ZnO nanoparticle samples probed using soft X-ray absorption spectroscopy. Vacuum 179, 109538 (2020)

    Article  CAS  Google Scholar 

  41. U. Godavarti et al., Precipitated cobalt doped ZnO nanoparticles with enhanced low temperature xylene sensing properties. Physica B 553, 151–160 (2019)

    Article  CAS  Google Scholar 

  42. N. Bhakta, P.K. Chakrabarti, Defect induced room temperature ferromagnetism and optical properties of (Co, Y) co-doped ZnO nanoparticles. J. Magn. Magn. Mater. 485, 419–426 (2019)

    Article  CAS  Google Scholar 

  43. A.T. Ravichandran, R. Karthick, Enhanced photoluminescence, structural, morphological and antimicrobial efficacy of Co-doped ZnO nanoparticles prepared by Co-precipitation method. Results Mater. 5, 100072 (2020)

    Article  Google Scholar 

  44. N. Pushpa, M.K. Kokila, Effect of cobalt doping on structural, thermo and photoluminescent properties of ZnO nanopowders. J. Lumin. 190, 100–107 (2017)

    Article  CAS  Google Scholar 

  45. S.D. Birajdar, V.R. Bhagwat, A.B. Shinde, K.M. Jadhav, Effect of Co 2+ ions on structural, morphological and optical properties of ZnO nanoparticles synthesized by sol–gel auto combustion method. Mater. Sci. Semicond. Process. 41, 441–449 (2016)

    Article  CAS  Google Scholar 

  46. S. Basu et al., Local structure investigation of cobalt and manganese doped ZnO nanocrystals and its correlation with magnetic properties. J. Phys. Chem. C 118(17), 9154–9164 (2014)

    Article  CAS  Google Scholar 

  47. G. Clavel, N. Pinna, D. Zitoun, Magnetic properties of cobalt and manganese doped ZnO nanowires. Phys Status Solidi (a) (2007). https://doi.org/10.1002/pssa.200673025204(1),pp.118-124

    Article  Google Scholar 

  48. D. Sharma, R. Jha, Structural and optical properties of Co-doped ZnO nano-ampoules synthesized by co-precipitation method. Mater. Lett. 190, 9–12 (2017)

    Article  CAS  Google Scholar 

  49. A.L. Patterson, The Scherrer formula for X-ray particle size determination. Phys. Rev. 56(10), 978–982 (1939)

    Article  CAS  Google Scholar 

  50. R. Udayabhaskar, B. Karthikeyan, Role of micro-strain and defects on band-gap, fluorescence in near white light emitting Sr doped ZnO nanorods. J. Appl. Phys. 116(9), 094310 (2014)

    Article  Google Scholar 

  51. I. Choudhary, R. Shukla, A. Sharma, K.K. Raina, Effect of excitation wavelength and europium doping on the optical properties of nanoscale zinc oxide. J. Mater. Sci. 31(22), 20033–20042 (2020)

    Google Scholar 

  52. S. Saleem et al., Modification in structural, optical, morphological, and electrical properties of zinc oxide (ZnO) nanoparticles (NPs) by metal (Ni, Co) dopants for electronic device applications. Arab. J. Chem. 15(1), 103518 (2022)

    Article  CAS  Google Scholar 

  53. S. Kumar, T.K. Song, S. Gautam, K.H. Chae, S.S. Kim, K.W. Jang, Structural, magnetic and electronic structure properties of Co doped ZnO nanoparticles. Mater. Res. Bull. 66, 76–82 (2015)

    Article  CAS  Google Scholar 

  54. A. Mesaros et al., Synthesis, structural and morphological characteristics, magnetic and optical properties of Co doped ZnO nanoparticles. Ceram. Int. 40(2), 2835–2846 (2014)

    Article  CAS  Google Scholar 

  55. S. Muthukumaran, R. Gopalakrishnan, Structural, FTIR and photoluminescence studies of Cu doped ZnO nanopowders by co-precipitation method. Opt. Mater. 34(11), 1946–1953 (2012)

    Article  CAS  Google Scholar 

  56. J. Tauc, Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 3(1), 37–46 (1968)

    Article  CAS  Google Scholar 

  57. D. Raoufi, Synthesis and photoluminescence characterization of ZnO nanoparticles. J. Lumin. 134, 213–219 (2013)

    Article  CAS  Google Scholar 

  58. A. Ghosh, R.N.P.J.J.E.N. Choudhary, Optical emission and absorption spectra of Zn–ZnO core-shell nanostructures. J. Exp. Nanosci. 5, 134–142 (2010)

    Article  CAS  Google Scholar 

  59. C.H. Patterson, Role of defects in ferromagnetism in Zn1-xCoxO: a hybrid density-functional study. Phys. Rev. B 74(14), 144432 (2006)

    Article  Google Scholar 

  60. N. Karak, B. Pal, D. Sarkar, T.K. Kundu, Growth of Co-doped ZnO nanoparticles by porous alumina assisted sol–gel route: structural optical and magnetic properties. J. Alloys Compd. 647, 252–258 (2015)

    Article  CAS  Google Scholar 

  61. S.M. Shah et al., Optical and morphological studies of transition metal doped ZnO nanorods and their applications in hybrid bulk heterojunction solar cells. Arab. J. Chem. 10(8), 1118–1124 (2017)

    Article  CAS  Google Scholar 

  62. J. Zhong et al., Ga-doped ZnO single-crystal nanotips grown on fused silica by metalorganic chemical vapor deposition. Appl. Phys. Lett. 83(16), 3401–3403 (2003)

    Article  CAS  Google Scholar 

  63. S. Yamamoto, Photoluminescence quenching in cobalt doped ZnO nanocrystals. J. Appl. Phys. 111(9), 094310 (2012)

    Article  Google Scholar 

  64. J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 4(2), 173–179 (2005)

    Article  CAS  Google Scholar 

  65. N.N. Lathiotakis, A.N. Andriotis, M. Menon, Codoping: a possible pathway for inducing ferromagnetism in ZnO. Phys. Rev. B 78(19), 193311 (2008)

    Article  Google Scholar 

  66. A. Ciechan, P. Bogusławski, Theory of the sp–d coupling of transition metal impurities with free carriers in ZnO. Sci. Rep. 11(1), 3848 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project is supported by the Department of Science and Technology (DST), New Delhi, India. The authors also acknowledge the Indian Institute of Technology, Delhi, India for helping out with SQUID measurements.

Author information

Authors and Affiliations

Authors

Contributions

IC: Experiments, original draft writing, conceptualization, validation, and supervision. RS: Characterization, investigations, review, and editing. SM: Characterization, review, and editing. RM: Methodology, and editing. RD: Data curation, and editing. KR: Experiments. S: Experiments. SS: Experiments.

Corresponding author

Correspondence to Ishan Choudhary.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhary, I., Sehrawat, R., Mehta, S. et al. Photoluminescent and magnetic characteristics of cobalt and manganese doped nanoscale zinc oxide. J Mater Sci: Mater Electron 34, 1505 (2023). https://doi.org/10.1007/s10854-023-10898-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10898-6

Navigation