Skip to main content

Advertisement

Log in

Porous conducting polymer and reduced graphene oxide: preparation, characterization and electrochemical performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We demonstrated direct deposition a porous conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) nanostructure on reduced graphene oxide (RGO) as high performance electrochemical electrode. The large area RGO film was constructed on substrate through a Langmuir–Blodgett deposition of graphene oxide and a following reductive treatment. The porous PEDOT nanostructure was successively constructed on RGO through an in situ solution polymerization and simple thermal treatment. This porous PEDOT/RGO nanocomposites contained large and highly opened surface area with superior electrochemical activity. A specific capacitance as high as 267 F/g at a current density of 0.5 A/g was achieved. The compared conductive performance between RGO and porous PEDOT resulted in better EIS performance of composite electrode. The stable covering of porous PEDOT on RGO also improved the capacitance retention performance of PEDOT, and the nanocomposites showed excellent capacitance retention rate after 4,000 charge/discharge cycles. The research data revealed that high specific capacitance and good cycling stability can be achieved either by coupling the advantages of carbon materials and conducting polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L. Xia, Z.X. Wei, M.X. Wan, Conducting polymer nanostructures and their application in biosensors. J. Colloid Interface Sci. 341, 1 (2010)

    Article  Google Scholar 

  2. D. Li, J.X. Huang, R.B. Kaner, Polyaniline nanofibers: a unique polymer nanostructure for versatile applications. Acc. Chem. Res. 42, 135 (2009)

    Article  Google Scholar 

  3. H.D. Tran, D. Li, R.B. Kaner, One-dimensional conducting polymer nanostructures: bulk synthesis and applications. Adv. Mater. 21, 1487 (2009)

    Article  Google Scholar 

  4. G.A. Snook, P. Kao, A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 196, 1 (2011)

    Article  Google Scholar 

  5. W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Hybrid nanorod-polymer solar cells. Science 295, 2425 (2002)

    Article  Google Scholar 

  6. M. Mastragostino, C. Arbizzanib, F. Soavia, Conducting polymers as electrode materials in supercapacitors. Solid State Ion. 148, 493 (2002)

    Article  Google Scholar 

  7. K.S. Ryu, K.M. Kim, N.G. Park, Y.J. Park, S.H. Chang, Symmetric pedox supercapacitor with conducting polyaniline electrodes. J. Power Sources 103, 305 (2002)

    Article  Google Scholar 

  8. K. Wang, J.Y. Huang, Z.X. Wei, Conducting polyaniline nanowire arrays for high performance supercapacitors. J. Phys. Chem. C 114, 8062 (2010)

    Article  Google Scholar 

  9. S. Cho, S.B. Lee, Fast electrochemistry of conductive polymer nanotubes: synthesis, mechanism, and application. Acc. Chem. Res. 41, 699 (2008)

    Article  Google Scholar 

  10. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845 (2008)

    Article  Google Scholar 

  11. K. Wang, Q.H. Meng, Y.J. Zhang, Z.X. Wei, M.H. Miao, High-performance two-ply yarn supercapacitors based on carbon nanotubes and polyaniline nanowire arrays. Adv. Mater. 25, 1494 (2013)

    Article  Google Scholar 

  12. Y. Zhou, Z.Y. Qin, L. Li, Y. Zhang, Y.L. Wei, L.F. Wang, M.F. Zhu, Polyaniline/multi-walled carbon nanotube composites with core-shell structures as supercapacitor electrode materials. Electrochim. Acta 55, 3904 (2010)

    Article  Google Scholar 

  13. K. Zhang, L.L. Zhang, X.S. Zhao, J.S. Wu, Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem. Mater. 22, 1392 (2010)

    Article  Google Scholar 

  14. Q. Wu, Y.X. Xu, Z.Y. Yao, A.R. Liu, G.Q. Shi, Supercapacitors based on flexible graphene/polyaniline nanofiber composites films. ACS Nano 4, 1963 (2010)

    Article  Google Scholar 

  15. E. Frackowiak, Carbon materials for supercapacitor application. Phys. Chem. Chem. Phys. 9, 1774 (2007)

    Article  Google Scholar 

  16. L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520 (2009)

    Article  Google Scholar 

  17. S. Bose, T. Kuila, A.K. Mishra, R. Rajasekar, N.H. Kim, J.H. Lee, Carbon-based nanostructured materials and their composites as supercapacitor electrodes. J. Mater. Chem. 22, 767 (2012)

    Article  Google Scholar 

  18. G.M. Suppes, B.A. Deore, M.S. Freund, Porous conducting polymer/heteropolyoxometalate hybrid material for electrochemical supercapacitor applications. Langmuir 24, 1064 (2008)

    Article  Google Scholar 

  19. L.L. Zhang, X. Zhao, M.D. Stoller, Y.W. Zhu, H.X. Ji, S. Murali, Y.P. Wu, S. Perales, B. Clevenger, R.S. Ruoff, Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett. 12, 1806 (2012)

    Article  Google Scholar 

  20. G. Eda, G. Fanchini, M. Chhowall, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotech. 3, 270 (2008)

    Article  Google Scholar 

  21. Y. Chen, X. Zhang, D.C. Zhang, P. Yu, Y.W. Ma, High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes. Carbon 49, 573 (2011)

    Article  Google Scholar 

  22. J.F. Shen, Y.Z. Hu, M. Shi, X. Lu, C. Qin, C. Li, M.X. Ye, Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets. Chem. Mater. 21, 3514 (2009)

    Article  Google Scholar 

  23. S.F. Pei, H.M. Cheng, The reduction of graphene oxide. Carbon 50, 3210 (2012)

    Article  Google Scholar 

  24. O.C. Compton, S.T. Nguyen, Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6, 711 (2010)

    Article  Google Scholar 

  25. I. Jung, D.A. Dikin, R.D. Piner, R.S. Ruoff, Tunable electrical conductivity of individual graphene oxide sheets reduced at “Low” temperatures. Nano Lett. 8, 4283 (2008)

    Article  Google Scholar 

  26. J.T. Zhang, X.S. Zhao, Conducting polymers directly coated on reduced graphene oxide sheets as high-performance supercapacitor electrodes. J. Phys. Chem. C 116, 5420 (2012)

    Article  Google Scholar 

  27. N.A. Kumar, H.J. Choi, Y.R. Shin, D.W. Chang, L.M. Dai, J.B. Baek, Polyaniline-grafted reduced graphene oxide for efficient electrochemical supercapacitors. ACS Nano 6, 1715 (2012)

    Article  Google Scholar 

  28. M.Q. Xue, F.W. Li, J. Zhu, H. Song, M.N. Zhang, T.B. Cao, Structure-based enhanced capacitance: in Situ growth of highly ordered polyaniline nanorods on reduced graphene oxide patterns. Adv. Funct. Mater. 22, 1284 (2012)

    Article  Google Scholar 

  29. D.Y. Cai, M. Song, Recent advance in functionalized graphene/polymer nanocomposites. J. Mater. Chem. 20, 7906 (2010)

    Article  Google Scholar 

  30. T. Kuilla, S. Bhadra, D.H. Yao, N.H. Kim, S. Bose, J.H. Lee, Recent advances in graphene based polymer composites. Prog. Polym. Sci. 35, 1350 (2010)

    Article  Google Scholar 

  31. L.L. Zhang, S.Y. Zhao, X.N. Tian, X.S. Zhao, Layered graphene oxide nanostructures with sandwiched conducting polymers as supercapacitor electrodes. Langmuir 26, 17624 (2010)

    Article  Google Scholar 

  32. C.G. Liu, Z.N. Yu, D. Neff, A. Zhamu, B.Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 10, 4863 (2010)

    Article  Google Scholar 

  33. T.H. Han, Y.K. Huang, A.T.L. Tan, V.P. Dravid, J.X. Huang, Steam etched porous graphene oxide network for chemical sensing. J. Am. Chem. Soc. 133, 15264 (2011)

    Article  Google Scholar 

  34. J.F. Wen, Y.D. Jiang, Y.J. Yang, S.B. Li, Conducting polymer and reduced graphene oxide Langmuir-Blodgett films: a hybrid nanostructure for high performance electrode applications. J. Mater. Sci.: Mater. Electron. 25, 1063 (2014)

    Google Scholar 

Download references

Acknowledgments

The work was supported by the National Science Foundation of China (NSFC) (Nos. 61101029, 51477026 and 61204098), A Plan for Supporting the New Century Talents (No. NCET-12-0091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Xu, J., Yang, Y. et al. Porous conducting polymer and reduced graphene oxide: preparation, characterization and electrochemical performance. J Mater Sci: Mater Electron 26, 1668–1677 (2015). https://doi.org/10.1007/s10854-014-2591-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2591-x

Keywords

Navigation