Skip to main content
Log in

Structural and optical properties of nc-Si:H thin films deposited by layer-by-layer technique

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Hydrogenated nanocrystalline silicon (nc-Si:H) thin films deposited on c-Si and quartz substrates by layer-by-layer (LBL) technique using radio-frequency plasma enhanced chemical vapour deposition system. The effects of rf power on the interlayer elemental profiling, structural and optical properties of the films were investigated by Auger electron spectroscopy, Fourier transform infrared spectroscopy, Raman scattering spectroscopy, X-ray diffraction and optical transmission and reflection spectroscopy. The results revealed that the LBL deposition leads to a formation of different ranges of crystallite sizes of nc-Si corresponds 3–6 and 8–26 nm respectively. LBL deposition also demonstrated a capability to increase the crystalline volume fraction of nc-Si up to 65.3 % with the crystallite size in between 5 and 6 nm, at the rf power in between 80 and 100 W. However, the crystalline volume fraction decreased for the rf power above 100 W due to the growth of nc-Si was suppressed by the formation of SiO2. In addition, the onset of crystallization of the films deposited on c-Si and quartz substrates are different with increase in the rf power. The effects of rf power on the growth of nc-Si, and the hydrogen content, structural disorder, crystallite size of nc-Si and oxygen diffusion into the LBL layer with the change of optical energy gap under the variation of rf power are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.-H. Shim, Im Seongil, Kim Youn Joong, N.-H. Cho, Thin Solid Films 503, 55 (2006)

    Article  Google Scholar 

  2. H. Shirai, T. Arai, T. Nakamura, Appl. Surf. Sci. 113(114), 111 (1997)

    Article  Google Scholar 

  3. J.P. Kleider, C. Longeaud, R. Bruggemann, F. Houze, Thin Solid Films 383, 57 (2001)

    Article  Google Scholar 

  4. V. Marcek, S. Verprek, Solid State Electron. 11, 683 (1968)

    Article  Google Scholar 

  5. F. Iacona, G. Franzo, C. Spinella, J. Appl. Phys. 87, 1295 (2000)

    Article  Google Scholar 

  6. J. Linnros, N. Lalie, A. Galecka, V. Grivickas, J. Appl. Phys. 86, 6128 (1999)

    Article  Google Scholar 

  7. L.T. Canham, Appl. Phys. Lett. 57, 1046 (1990)

    Article  Google Scholar 

  8. Atif Mossad Ali, J. Non-Cryst. Solids 352, 3126 (2006)

    Article  Google Scholar 

  9. T. Itoh, K. Yamamoto, K. Ushikoshi, S. Nonomura, S. Nitta, J. Non-Cryst. Solids 266–269, 201 (2000)

    Article  Google Scholar 

  10. P. Alpuim, V. Chu, J. Appl. Phys. 86, 3812 (1999)

    Article  Google Scholar 

  11. W.C. Choi, E.K. Kim, S.-K. Min, C.Y. Park, J.H. Kim, T.-Y. Seong, Appl. Phys. Lett. 70, 3014 (1997)

    Article  Google Scholar 

  12. P. Roca i Cabarrocas, Phys. Status Solidi C 1(5), 1115 (2004)

    Article  Google Scholar 

  13. C.Y. Lin, Y.K. Fang, S.F. Chen, P.C. Lin, C.S. Lin, T.H. Chou, J.S. Hwang, K.I. Lin, Mater. Sci. Eng. B 127, 251 (2006)

    Article  Google Scholar 

  14. P. Roca i Cabarrocas, S. Hamma, A. Hadjadj, J. Bertomeu, J. Andreu, Appl. Phys. Lett. 69, 529 (1996)

    Article  Google Scholar 

  15. G. van Elzakker, F.D. Tichelaar, M. Zeman, Thin Solid Films 515, 7460–7464 (2007)

    Article  Google Scholar 

  16. R. Ritikos, B.T. Goh, K.A.M. Sharif, M.R. Muhamad, S.A. Rahman, Thin Solid Films 517, 5092 (2009)

    Article  Google Scholar 

  17. X.D. Bai, Zhi Xu, S. Liu, E.G. Wang, Sci. Technol. Adv. Mater. 6, 804 (2005)

    Article  Google Scholar 

  18. D. Zhang, M.J. Kushner, J. Vac. Sci. Technol. A 19, 524 (2001)

    Article  Google Scholar 

  19. G. Lucovksy, R.J. Nemanich, J.C. Knights, Phys. Rev. B 19, 2064 (1979)

    Article  Google Scholar 

  20. M.H. Brodsky, M. Cardona, J.J. Cuomo, Phys. Rev. B 16, 3556 (1977)

    Article  Google Scholar 

  21. A. Cremona, L. Laguardia, E. Vassallo, G. Ambrosone, U. Coscia, F. Orsini, G. Poletti, J. Appl. Phys. 97, 023533 (2005)

    Article  Google Scholar 

  22. D. Han, K.D. Wang, J.M. Owens, J. Appl. Phys. 93, 3773 (2003)

    Google Scholar 

  23. G.B. Tong, M.R. Muhamad , S.A. Rahman, Sains Malaysiana 41(8), 993 (2012)

    Google Scholar 

  24. R. Ruther, J. Livingstone, Thin Solid Films 251, 30 (1994)

    Article  Google Scholar 

  25. E. Bhattacharya, A.H. Mahan, Appl. Phys. Lett. 52, 1587 (1988)

    Article  Google Scholar 

  26. Cheng-Zhao Chen, Sheng-Hua Qiu, Cui-Qing Liu, Wu Yan-Dan, Ping Li, Yu. Chu-Ying, Xuan-ying Lin, J. Phys. D Appl. Phys. 41, 195413 (2008)

    Article  Google Scholar 

  27. X.Y. Lin, C.J. Huang, K.X. Lin, Y.P. Yu, C.Y. Yu, L.F. Chi, Chin. Phys. Lett. 20, 1879 (2003)

    Article  Google Scholar 

  28. M. Kondo, M. Okada, S. Ohta, L. Guo, A. Matsuda, J. Non-Cryst. Solids 226–229, 84 (2000)

    Article  Google Scholar 

  29. Chandan Das, Swati Ray, J. Phys. D Appl. Phys. 35, 2211 (2002)

    Article  Google Scholar 

  30. K. Bhattacharya, D. Das, Nanotechnology 18, 415704 (2007)

    Article  Google Scholar 

  31. A. Chowdhury, S. Mukhopadhyay, S. Ray, J. Cryst. Growth 304, 352 (2007)

    Article  Google Scholar 

  32. Romyani Goswami, Biswajit Chowdhury, Swati Ray, Thin Solid Films 516, 2306 (2008)

    Article  Google Scholar 

  33. X. Wu, Ch. Ossadnik, Ch. Eggs, S. Veprek, F. Phillipp, J. Vac. Sci. Technol., B 20, 1368 (2002)

    Article  Google Scholar 

  34. G.B. Tong, Z. Aspanut, M.R. Muhamad, S.A. Rahman, Vacuum 86, 1195 (2012)

  35. G.B. Tong, S.M.Ab. Gani, M.R. Muhamad, S.A. Rahman, Thin Solid Films 517, 4945 (2009)

    Google Scholar 

  36. T.V. Torchynska, Superlattices Microstruct. 45, 267 (2009)

    Article  Google Scholar 

  37. M. Morales Rodriguez, A. Dı′az Cano, T.V. Torchynska, J. Palacios Gomez Æ, G. Gomez Gasga, G. Polupan, M. Mynbaeva, J. Mater. Sci. Mater. Electron 19, 682 (2008)

    Google Scholar 

  38. S. Hazra, S.C. Saha, S. Ray, J. Phys. D Appl. Phys. 32, 208 (1999)

    Article  Google Scholar 

  39. X.X. Wang, J.G. Zhang, L. Ding, B.W. Cheng, W.K. Ge, J.Z. Yu et al., Phys. Rev. B 72, 195313 (2005)

    Article  Google Scholar 

  40. G. Lihui, L. Rongming, Thin Solid Films 376, 249 (2000)

    Article  Google Scholar 

  41. P. Kumar, F. Zhu, A. Madan, Int. J. Hydrogen Energy 33, 3938 (2008)

    Article  Google Scholar 

  42. A. Gajovic, D. Gracin, K. Juraic, J. Sancho-Parramon, M. Ceh, Thin Solid Films 517, 5453 (2009)

    Article  Google Scholar 

  43. E. Edelberg, S. Bergh, R. Naone, M. Hall, E. S. Aydil, J. Appl. Phys. 81, 2410 (1997)

    Article  Google Scholar 

  44. B.T. Goh, M.R. Muhamad, S.A. Rahman, Physica B 405, 4838 (2010)

    Google Scholar 

  45. N. Budini, P.A. Rinaldi, J.A. Schmidt, R.D. Arce, R.H. Buitrago, Thin Solid Films 518, 5349 (2010)

    Article  Google Scholar 

  46. B. Roy, A.H. Mahan, Q. Wang, R. Reedy, D.W. Readey, D.S. Ginley, Thin Solid Films 516, 6517 (2008)

    Article  Google Scholar 

  47. G. Harbeke, L. Jastrzebski, J. Electrochem. Soc. 137, 696 (1990)

    Article  Google Scholar 

  48. G.W. Cullen, M.S. Abrahams, J.F. Carboy, M.T. Duffy, W.E. Ham, L. Jastrzebski, R.T. Smith, M. Blumenfeld, G. Harbeke, J. Lagowski, J. Cryst. Growth 56, 281 (1982)

    Article  Google Scholar 

  49. J.C. Manifcacier, J. Gasiot, J.P. Fillard, J. Phys. E: Sci. Instrum. 9, 1002 (1976)

    Article  Google Scholar 

  50. R. Swanepoel, J. Phys. E: Sci. Instrum. 16, 1214 (1983)

    Article  Google Scholar 

  51. S. Lebib, P. Roca, I. Cabarrocas, J. Appl. Phys. 97, 104334 (2005)

    Article  Google Scholar 

  52. A. Chowdhury, S. Mukhopadhyay, S. Ray, Sol. Energy Mater. Sol. Cells 92, 385 (2008)

    Article  Google Scholar 

  53. Koyel Bhattacharya, Debajyoti Das, Nanotechnology 18, 415704 (2007)

    Article  Google Scholar 

  54. R.I. Badran, F.S. Al-Hazmi, S. Al-Heniti, A.A. Al-Ghamdi, J. Li, S. Xiong, Vacuum 83, 1023 (2009)

    Article  Google Scholar 

  55. A.C.W. Biebericher, W.F. Van der Weg, W.J. Goedheer, J.K. Rath, J. Non.-Cryst. Solids 299–302, 74 (2002)

  56. Y.H. Wang, J. Lin, C.H.A. Huan, Mater. Sci. & Eng. B 104, 80 (2003)

    Article  Google Scholar 

  57. Qijin Cheng, Xu Shuyan, Kostya Ken Ostrikov, Nanotechnology 20, 215606 (2009)

    Article  Google Scholar 

  58. P.F. Trwoga, A.J. Kenyon, C.W. Pitt, J. Appl. Phys. 83, 3789 (1998)

    Article  Google Scholar 

  59. G.D. Cody, C.R. Wronski, B. Abeles, R.B. Stephens, B. Brooks, Sol. Cells 2, 227 (1980)

    Article  Google Scholar 

  60. D. Das, R. Banerjee, A.K. Batabyal, A.K. Barua, J. Non-Cryst, Solids 103, 143 (1988)

    Google Scholar 

  61. Y. Hishikawa, S. Tsuge, N. Nakamura, S. Tsuda, S. Nakano, Y. Kuwano, J. Appl. Phys. 69(1), 508 (1991)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the University Malaya Research Grant (UMRG) Program of RP007B-13AFR and University of Malaya Research Grant of RG259-13AFR. The authors would like to acknowledge Mrs. Zurina Marzuki and Mrs. Saedah Harun for helping the Auger electron spectroscopy (AES) measurement at Department of Physics, Faculty of Science, University of Malaya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boon Tong Goh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goh, B.T., Wah, C.K., Aspanut, Z. et al. Structural and optical properties of nc-Si:H thin films deposited by layer-by-layer technique. J Mater Sci: Mater Electron 25, 286–296 (2014). https://doi.org/10.1007/s10854-013-1584-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1584-5

Keywords

Navigation