Skip to main content
Log in

Effect of zinc oxide concentration on the core–shell ZnS/ZnO nanocomposites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, synthesis and characterization of core–shell zinc sulphide (ZnS)/zinc oxide (ZnO) nanocomposites has been reported to see the effect of ZnO concentration in core–shell combination. The nascent as well as core–shell nanostructures were prepared by a chemical precipitation method starting with the synthesis of nascent ZnS nanoparticles. The change in morphological and optical properties of core–shell nanoparticles was studied by changing the concentration of ZnO for a fixed amount of ZnS. The nascent ZnS nanoparticles were of 4–6 nm in diameter as seen from TEM, each containing primary crystallites of size 1.8 nm which was estimated from the X-ray diffraction patterns. However, the particle size increases appreciably with the increase in ZnO concentration leading to the well known ZnO wurtzite phase coated with FCC phase of ZnS. Band gap studies were done by UV–visible spectroscopy and it shows that band gap tunability can be achieved appreciably in case of ZnS/ZnO core–shell nanostructures by varying the concentration of ZnO. Fourier transform infrared analysis also proves the formation of core–shell nanostructures. Photoluminescence studies show that emission wavelength blue shifts with the increase in ZnO concentration. These core–shell ZnS/ZnO nanocomposites will be a very suitable material for any type of optoelectronic application as we can control various parameters in this case in comparison to the nascent nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Lee, V.C. Sundar, J.R. Heine, M.G. Bawendi, K.F. Jensen, Adv. Mater. Commun. 12(5), 1102–1105 (2000)

    Article  CAS  Google Scholar 

  2. W.J. Parak, D. Gerion, D. Zanchet, A.S. Woerz, T. Pellegrino, C.M. Micheel, S.C. Williams, M. Seitz, R.E. Bruehl, Z. Bryant, C. Bustamante, C.R. Bertozzi, A.P. Alivisatos, Chem. Mater. 14(5), 2113–2119 (2002)

    Article  CAS  Google Scholar 

  3. M. Han, X. Gao, J.Z. Su, S. Nie, Nat. Biotechnol. 19, 631–635 (2001)

    Article  CAS  Google Scholar 

  4. W.U. Huynh, J.J. Dittmer, W.C. Libby, G.L. Whiting, A.P. Alivisatos, Adv. Funct. Mater. 13(1), 73–79 (2003)

    Article  CAS  Google Scholar 

  5. L. Xu, X.F. Huang, J. Zhu, H.M. Chen, K.J. Chen, J. Mater. Sci. 35(10), 1375 (2000)

    Article  CAS  Google Scholar 

  6. X.G. Peng, M.C. Schlamp, A.V. Kadavanich, A.P. Alivisatos, J. Am. Chem. Soc. 119, 7019 (1997)

    Article  CAS  Google Scholar 

  7. N. Karar, H. Chander, S.M. Shivaprasad, Appl. Phys. Lett. 85, 5058 (2004)

    Article  CAS  Google Scholar 

  8. A.D. Dinsmore, D.S. Hsu, S.B. Qadri, J.O. Cross, T.A. Kennedy, H.F. Gray, B.R. Ratna, J. Appl. Phys. 88, 4985 (2000)

    Article  CAS  Google Scholar 

  9. D. Jiang, L. Cao, W. Liu, G. Su, H. Qu, Y. Sun, B. Dong, Nanoscale Res. Lett. 4(1), 78–83 (2009)

    Article  CAS  Google Scholar 

  10. B.S. RemadeviI, R. Raveendran, A.V. Vaidyan, Pramana J. Phy. 68(4), 679–687 (2007)

    Article  Google Scholar 

  11. R. Viswanatha, T.G. Venkatesh, C.C. Vidyasagar, Y.A. Nayaka, Arch. Appl. Sci. Res. 4(1), 480–486 (2012)

    CAS  Google Scholar 

  12. L.E. Brus, J. Chem. Phys. 80, 4403–4409 (1984)

    Article  CAS  Google Scholar 

  13. M. Sharma, S. Kumar, O.P. Pandey, J. Nanopart. Res. 12, 2655–2666 (2010)

    Article  CAS  Google Scholar 

  14. S.K. Mishra, R.K. Srivastava, S.G. Prakash, R.S. Yadav, A.C. Pandey, Opto-Electron. Rev. 18, 467 (2010)

    Article  CAS  Google Scholar 

  15. W.Q. Peng, S.C. Qu, G.W. Cong, Z.G. Wang, Mater. Sci. Semicond. Process. 9, 156 (2006)

    Article  CAS  Google Scholar 

  16. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, J. Appl. Phys. 79, 7983 (1996)

    Article  CAS  Google Scholar 

  17. U. Pal, P. Santiago, J. Phys. Chem. B 109, 15317–15321 (2005)

    Article  CAS  Google Scholar 

  18. R.M. Nyffenegger, B. Craft, M. Shaaban, S. Gorer, G. Erley, R.M. Penner, Chem. Mater. 10, 1120 (1998)

    Article  CAS  Google Scholar 

  19. M. Liu, A.H. Kitai, P. Mascher, J. Lumin. 54, 35–42 (1992)

    Article  CAS  Google Scholar 

  20. G. Xiong, U. Pal, J.G. Serrano, J. Appl. Phys. 101, 024317 (2007)

    Article  Google Scholar 

  21. T.K. Kundu, N. Karak, P. Barik, S. Saha, IJSCE 1, 19–24 (2011)

    Google Scholar 

  22. P. Schroer, P. Kriiger, J. Pollmann, Phys. Rev. B 47, 6971 (1993)

    Article  CAS  Google Scholar 

  23. R.B. Kale, Y.J. Hsu, Y.F. Lin, S.Y. Lu, Solid State Commun. 142, 302 (2007)

    Article  CAS  Google Scholar 

  24. H.S. Bhatti, S. Kumar, K. Singh, Kavita, J. Mater. Sci. 48(16), 5536–5542 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Leading Foreign Research Institute Recruitment Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (MEST) (No. 2013-044975). One of the author AJ is also thankful to the Department of Science (DST), New Delhi, India for supporting the part of this research work (vide Project No. SR/FTP/PS-69/2008), dated 15/1/2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, A., Panwar, S., Kang, T.W. et al. Effect of zinc oxide concentration on the core–shell ZnS/ZnO nanocomposites. J Mater Sci: Mater Electron 24, 5147–5154 (2013). https://doi.org/10.1007/s10854-013-1537-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1537-z

Keywords

Navigation