Skip to main content
Log in

Electronic Structure and Ferromagnetism in Zincblende Zn1xCoxS Nanoparticles

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We have prepared Zn1−xCoxS nanoparticles (NPs) and studied their local-geometric, electronic, and magnetic properties. X-ray diffraction analyses have indicated that NPs with average crystallite sizes of 2.2 ∼ 2.9 nm are single phase and crystallize in the zincblende-type structure. Cobalt ions with oxidation state + 2 (Co2+) replaced for Zn2+ and almost unchanged the zincblende-type structure of the ZnS host lattice. Interestingly, all samples show room-temperature ferromagnetism and ferromagnetic order increases with increasing Co content (x) in Zn1−xCoxS NPs. With the results obtained from analyzing the local-geometric structures at Zn and Co K-edges and photoluminescence spectra, we believe that ferromagnetism in Zn1−xCoxS NPs is related to intrinsic defects and exchange interactions between Co2+ ions. We have also reviewed the recent studies on ZnS-based dilute-magnetic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gilbert, B., Frazer, B.H., Zhang, H., Huang, F., Banfield, J.F., Haskel, D., Lang, J.C., Srajer, G., Stasio, G.: De: X-ray absorption spectroscopy of the cubic and hexagonal polytypes of zinc sulfide. Phys. Rev. B. 66, 245205 (2002). https://doi.org/10.1103/PhysRevB.66.245205

    Article  ADS  Google Scholar 

  2. Schröer, P., Krüger, P., Pollmann, J.: First-principles calculation of the electronic structure of the wurtzite semiconductors ZnO and ZnS. Phys. Rev. B. 47, 6971–6980 (1993). https://doi.org/10.1103/PhysRevB.47.6971

    Article  ADS  Google Scholar 

  3. Yuan, G.D., Zhang, W.J., Zhang, W.F., Fan, X., Bello, I., Lee, C.S., Lee, S.T.: p-type conduction in nitrogen-doped ZnS nanoribbons. Appl. Phys. Lett. 93, 213102 (2008). https://doi.org/10.1063/1.3025846

    Article  ADS  Google Scholar 

  4. Murugadoss, G.: Synthesis and characterization of transition metals doped ZnO nanorods. J. Mater. Sci. Technol. 28, 587–593 (2012). https://doi.org/10.1016/S1005-0302(12)60102-9

    Article  Google Scholar 

  5. Ren, G., Lin, Z., Wang, C., Liu, W., Zhang, J., Huang, F., Liang, J.: Relationship between the coprecipitation mechanism, doping structure and physical properties of Zn1−xCoxS nanocrystallites. Nanotechnology. 18, 035705 (2007). https://doi.org/10.1088/0957-4484/18/3/035705

    Article  ADS  Google Scholar 

  6. Peng, Y.-P., Zou, X., Bai, Z., Leng, Y., Jiang, B., Jiang, X., Zhang, L.: Mid-infrared laser emission from Cr:ZnS channel waveguide fabricated by femtosecond laser helical writing. Sci. Rep. 5, 18365 (2016). https://doi.org/10.1038/srep18365

    Article  ADS  Google Scholar 

  7. Li, H., Shih, W.Y., Shih, W.-H.: Non-heavy-metal ZnS quantum dots with bright blue photoluminescence by a one-step aqueous synthesis. Nanotechnology. 18, 205604 (2007). https://doi.org/10.1088/0957-4484/18/20/205604

    Article  ADS  Google Scholar 

  8. Zhu, Y.-C., Bando, Y., Xue, D.-F., Golberg, D.: Nanocable-aligned ZnS tetrapod nanocrystals. J. Am. Chem. Soc. 125, 16196–16197 (2003). https://doi.org/10.1021/ja037965d

    Article  Google Scholar 

  9. Jiang, Y., Zhang, W.J., Jie, J.S., Meng, X.M., Zapien, J.A., Lee, S.-T.: Homoepitaxial growth and lasing properties of ZnS nanowire and nanoribbon arrays. Adv. Mater. 18, 1527–1532 (2006). https://doi.org/10.1002/adma.200501913

    Article  Google Scholar 

  10. Fang, X., Bando, Y., Liao, M., Zhai, T., Gautam, U.K., Li, L., Koide, Y., Golberg, D.: An efficient way to assemble ZnS nanobelts as ultraviolet-light sensors with enhanced photocurrent and stability. Adv. Funct. Mater. 20, 500–508 (2010). https://doi.org/10.1002/adfm.200901878

    Article  Google Scholar 

  11. Farhangfar, S., Yang, R.B., Pelletier, M., Nielsch, K.: Atomic layer deposition of ZnS nanotubes. Nanotechnology. 20, 325602 (2009). https://doi.org/10.1088/0957-4484/20/32/325602

    Article  Google Scholar 

  12. Ni, W.-S., Lin, Y.-J.: Defect-induced magnetic properties of Cu-doped ZnS films with different copper contents. J. Alloys Compd. 649, 968–972 (2015). https://doi.org/10.1016/j.jallcom.2015.07.190

    Article  Google Scholar 

  13. Ichino, K., Kato, H., Sakai, Y., Ohmi, K., Honma, T., Itoh, J., Sasakura, A.: Optical properties and X-ray absorption fine structure analysis of ZnS:Cu,Cl thin-film phosphors. Jpn. J. Appl. Phys. 49, 082602 (2010). https://doi.org/10.1143/JJAP.49.082602

    Article  ADS  Google Scholar 

  14. Kumar, S., Chen, C.L., Dong, C.L., Ho, Y.K., Lee, J.F., Chan, T.S., Thangavel, R., Chen, T.K., Mok, B.H., Rao, S.M., Wu, M.K.: Room temperature ferromagnetism in Ni doped ZnS nanoparticles. J. Alloys Compd. 554, 357–362 (2013). https://doi.org/10.1016/j.jallcom.2012.12.001

    Article  Google Scholar 

  15. Patel, S.P., Pivin, J.C., Chawla, A.K., Chandra, R., Kanjilal, D., Kumar, L.: Room temperature ferromagnetism in Zn1−xCoxS thin films with wurtzite structure. J. Magn. Magn. Mater. 323, 2734–2740 (2011). https://doi.org/10.1016/j.jmmm.2011.05.057

    Article  ADS  Google Scholar 

  16. Chen, H., Shi, D., Qi, J.: Comparative studies on the magnetic properties of ZnS nanowires doped with transition metal atoms. J. Appl. Phys. 109, 084338 (2011). https://doi.org/10.1063/1.3573388

    Article  ADS  Google Scholar 

  17. Kaur, N., Singh, K.L., Sharma, H.: First principle investigation of the magnetic properties of transition metal doped (ZnS)n (n = 1–16) clusters. J. Magn. Magn. Mater. 388, 160–166 (2015). https://doi.org/10.1016/j.jmmm.2015.04.035

    Article  ADS  Google Scholar 

  18. Zhao, W., Wei, Z., Zhang, L., Wu, X., Wang, X., Jiang, J.: Optical and magnetic properties of Co and Ni co-doped ZnS nanorods prepared by hydrothermal method. J. Alloys Compd. 698, 754–760 (2017). https://doi.org/10.1016/j.jallcom.2016.12.127

    Article  Google Scholar 

  19. Wei, M., Yang, J., Yan, Y., Yang, L., Cao, J., Fu, H., Wang, B., Fan, L.: Influence of Mn ions concentration on optical and magnetic properties of Mn-doped ZnS nanowires. Phys. E Low-dimensional Syst. Nanostructures. 52, 144–149 (2013). https://doi.org/10.1016/j.physe.2013.04.007

    Article  ADS  Google Scholar 

  20. Chandra Patel, P., Ghosh, S., Srivastava, P.C.: Effect of impurity concentration on optical and magnetic properties in ZnS:Cu nanoparticles. Phys. E Low-dimensional Syst. Nanostructures. 93, 148–152 (2017). https://doi.org/10.1016/j.physe.2017.06.009

    Article  ADS  Google Scholar 

  21. Kunapalli, C.K., Shaik, K.: Room-temperature ferromagnetic Zn1−xNixS nanoparticles. Appl. Phys. A. 124, 384 (2018). https://doi.org/10.1007/s00339-018-1811-2

    Article  ADS  Google Scholar 

  22. Sreenivasulu, B., Venkatramana Reddy, S., Venkateswara Reddy, P.: Structural, optical and magnetic properties of (Cu, Ni) co-doped ZnS nanoparticles. J. Mater. Sci. Mater. Electron. 29, 251–259 (2018). https://doi.org/10.1007/s10854-017-7911-5

    Article  Google Scholar 

  23. Kumar, S., Verma, N.K.: Room temperature investigations on optical and magnetic studies of CoxZn1−xS nanorods. J. Magn. Magn. Mater. 374, 548–552 (2015). https://doi.org/10.1016/j.jmmm.2014.08.100

    Article  ADS  Google Scholar 

  24. Goktas, A.: Sol–gel derived Zn1−xFexS diluted magnetic semiconductor thin films: compositional dependent room or above room temperature ferromagnetism. Appl. Surf. Sci. 340, 151–159 (2015). https://doi.org/10.1016/j.apsusc.2015.02.115

    Article  ADS  Google Scholar 

  25. Peng, W.Q., Qu, S.C., Cong, G.W., Zhang, X.Q., Wang, Z.G.: Optical and magnetic properties of ZnS nanoparticles doped with Mn2 + . J. Cryst. Growth. 282, 179–185 (2005). https://doi.org/10.1016/j.jcrysgro.2005.05.005

    Article  ADS  Google Scholar 

  26. Zeng, X., Zhang, J., Huang, F.: Optical and magnetic properties of Cr-doped ZnS nanocrystallites. J. Appl. Phys. 111, 123525 (2012). https://doi.org/10.1063/1.4729877

    Article  ADS  Google Scholar 

  27. Zhu, G., Zhang, S., Xu, Z., Ma, J., Shen, X.: Ultrathin ZnS single crystal nanowires: controlled synthesis and room-temperature ferromagnetism properties. J. Am. Chem. Soc. 133, 15605–15612 (2011). https://doi.org/10.1021/ja2049258

    Article  Google Scholar 

  28. Ławniczak-Jabońska, K., Goacki, Z.: Extended X-ray absorption fine structure studies of Co doped ZnS and ZnSe alloys. Acta Phys. Pol. A. 86, 727–735 (1994). https://www.infona.pl/resource/bwmeta1.element.bwnjournal-article-appv86z508kz

    Article  Google Scholar 

  29. Pong, W.F., Mayanovic, R.A., Kao, J.K., Hsieh, H.H., Pieh, J.Y., Chang, Y.K., Kuo, K.C., Tseng, P.K., Lee, J.F.: Degree of p-d hybridization in Zn1−xMnxY (Y = S, Se) and Zn1−xCoxS alloys as studied by X-ray-absorption spectroscopy. Phys. Rev. B. 55, 7633–7640 (1997). https://doi.org/10.1103/PhysRevB.55.7633

    Article  ADS  Google Scholar 

  30. Curcio, A.L., Bernardi, M.I.B., Mesquita, A.: Local structure and photoluminescence properties of nanostructured Zn1−xMnxS material. Phys. status solidi. 12, 1367–1371 (2015). https://doi.org/10.1002/pssc.201510135

    Article  Google Scholar 

  31. Teo, B.K.: EXAFS: Basic Principles and Data Analysis. Springer, Berlin (1986)

    Book  Google Scholar 

  32. Chen, X.B., Yang, N., Liu, X.F., Yu, R.H.: Structure dependent photoluminescence and magnetic properties of Co:ZnS nanostructures. Phys. Scr. 88, 035703 (2013). https://doi.org/10.1088/0031-8949/88/03/035703

    Article  ADS  Google Scholar 

  33. Patel, P.C., Ghosh, S., Srivastava, P.C.: Antiferromagnetic coupling in Co-doped ZnS. J. Mater. Sci. 50, 7919–7929 (2015). https://doi.org/10.1007/s10853-015-9356-7

    Article  ADS  Google Scholar 

  34. Yang, J., Niu, H., Cao, J., Han, D., Yang, S., Liu, Q., Wang, T.: Room temperature ferromagnetism and optical property of Zn1−xCoxS nanorods. Superlattices Microstruct. 82, 75–81 (2015). https://doi.org/10.1016/j.spmi.2015.02.016

    Article  ADS  Google Scholar 

  35. Lewicki, A., Schindler, A.I., Furdyna, J.K., Giriat, W.: Magnetic susceptibility of Zn1-x CoxS and Zn1−xCoxSe alloys. Phys. Rev. B. 40, 2379–2382 (1989). https://doi.org/10.1103/PhysRevB.40.2379

    Article  ADS  Google Scholar 

  36. L/awniczak-Jabl/onska, K., Iwanowski, R.J., Gol/acki, Z., Traverse, A., Pizzini, S., Fontaine, A., Winter, I., Hormes, J.: Local electronic structure of ZnS and ZnSe doped by Mn, Fe, Co, and Ni from X-ray-absorption near-edge structure studies. Phys. Rev. B. 53, 1119–1128 (1996). https://doi.org/10.1103/PhysRevB.53.1119

    Article  ADS  Google Scholar 

  37. Valério, L.R., Mamani, N.C., de Zevallos, A.O., Mesquita, A., Bernardi, M.I.B., Doriguetto, A.C., de Carvalho, H.B.: Preparation and structural-optical characterization of dip-coated nanostructured Co-doped ZnO dilute magnetic oxide thin films. RSC Adv. 7, 20611–20619 (2017). https://doi.org/10.1039/C7RA01200D

    Article  Google Scholar 

  38. Cho, D.-Y., Xi, L., Boothroyd, C., Kardynal, B., Lam, Y.M.: The role of ion exchange in the passivation of In(Zn)P nanocrystals with ZnS. Sci. Rep. 6, 22818 (2016). https://doi.org/10.1038/srep22818

    Article  ADS  Google Scholar 

  39. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32, 751–767 (1976). https://doi.org/10.1107/S0567739476001551

    Article  ADS  Google Scholar 

  40. Sreekantha Reddy, D., Kang, B., Yu, S.C., Gunasekhar, K.R., Sreedhara Reddy, P.: Synthesis and characterization of Zn1−xMnxS nanocrystalline films prepared on glass substrates. Appl. Phys. A. 91, 627–630 (2008). https://doi.org/10.1007/s00339-008-4488-0

    Article  ADS  Google Scholar 

  41. Hassan, M., Younas, S., Sher, F., Husain, S.S., Riaz, S., Naseem, S.: Room temperature ferromagnetism in single-phase Zn1−xMnxS diluted magnetic semiconductors fabricated by co-precipitation technique. Appl. Phys. A. 123, 352 (2017). https://doi.org/10.1007/s00339-017-0975-5

    Article  ADS  Google Scholar 

  42. Chu, X.-Y., Wang, X.-N., Li, J.-H., Yao, D., Fang, X., Fang, F., Wei, Z.-P., Wang, X.-H.: Influence factors and mechanism of emission of ZnS:Cu nanocrystals. Chinese Phys. B. 24, 067805 (2015). https://doi.org/10.1088/1674-1056/24/6/067805

    Article  ADS  Google Scholar 

  43. Saikia, D., Borah, J.P.: Carrier-induced ferromagnetism in half-metallic Co-doped ZnS-diluted magnetic semiconductor: a DFT study. Appl. Phys. A. 124, 240 (2018). https://doi.org/10.1007/s00339-018-1623-4

    Article  ADS  Google Scholar 

  44. de Queiroz, A.A.A., Martins, M., Soares, D.A.W., França, E.́J.: Modeling of ZnS quantum dots synthesis by DFT techniques. J. Mol. Struct. 873, 121–129 (2008). https://doi.org/10.1016/j.molstruc.2007.03.013

    Article  ADS  Google Scholar 

  45. Ma, L., Chen, W.: Zns:cu,co water-soluble afterglow nanoparticles: synthesis, luminescence and potential applications. Nanotechnology 21, 385604 (2010). https://doi.org/10.1088/0957-4484/21/38/385604

    Article  ADS  Google Scholar 

  46. Dong, J., Zeng, X., Xia, W., Zhang, X., Zhou, M., Wang, C.: Ferromagnetic behavior of non-stoichiometric ZnS microspheres with a nanoplate-netted surface. RSC Adv. 7, 20874–20881 (2017). https://doi.org/10.1039/C7RA02521A

    Article  Google Scholar 

  47. Sambasivam, S., Joseph, D.P., Reddy, D.R., Reddy, B.K., Jayasankar, C.K.: Synthesis and characterization of thiophenol passivated Fe-doped ZnS nanoparticles. Mater. Sci. Eng. B. 150, 125–129 (2008). https://doi.org/10.1016/j.mseb.2008.03.009

    Article  Google Scholar 

  48. Coey, J.M.D.: Ferromagnetism. Solid State Sci. 7, 660–667 (2005). https://doi.org/10.1016/j.solidstatesciences.2004.11.012

    Article  ADS  Google Scholar 

  49. Phan, T.-L., Yu, S.C.: Optical and magnetic properties of Zn1−xMnxO nanorods grown by chemical vapor deposition. J. Phys. Chem. C. 117, 6443–6453 (2013). https://doi.org/10.1021/jp312080v

    Article  Google Scholar 

  50. Phan, T.-L., Zhang, Y.D., Yang, D.S., Nghia, N.X., Thanh, T.D., Yu, S.C.: Defect-induced ferromagnetism in ZnO nanoparticles prepared by mechanical milling. Appl. Phys. Lett. 102, 072408 (2013). https://doi.org/10.1063/1.4793428

    Article  ADS  Google Scholar 

  51. Straumal, B., Mazilkin, A., Protasova, S., Myatiev, A., Straumal, P., Goering, E., Baretzky, B.: Influence of texture on the ferromagnetic properties of nanograined ZnO films. Phys. status solidi. 248, 1581–1586 (2011). https://doi.org/10.1002/pssb.201001182

    Article  Google Scholar 

Download references

Funding

This work is supported by Thai Nguyen University of Technology (Grant No. T2018-B01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. T. Dang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, M.T., Ca, N.X., Loan, P.N. et al. Electronic Structure and Ferromagnetism in Zincblende Zn1xCoxS Nanoparticles. J Supercond Nov Magn 32, 1761–1768 (2019). https://doi.org/10.1007/s10948-018-4874-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4874-6

Keywords

Navigation