Skip to main content
Log in

AC electrical and optical characterization of epoxy–Al2O3 composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The AC electrical and optical characterizations of epoxy–alumina (Al2O3) composites have been investigated. Sheets filled with alumina were prepared with different alumina concentrations (0, 2, 5, 8, 10, and 15 wt%). The AC electrical properties were measured by using impedance spectroscopy as a function of applied frequency in range from 50 kHz to 1 MHz and filler concentration. The results obtained showed that the applied frequency and filler concentration was found to influence the AC electrical conductivity and dielectric behavior of the prepared composites. The UV-optical results obtained were analyzed in terms of the absorption formula for non-crystalline materials. The absorption coefficient and the optical energy gap (Eopt) have been obtained from the direct allowed transitions in k-space at room temperature. The tail widths (ΔE) of the localized states in the band gap were evaluated using the Urbach-edges formula. It was found that both (Eopt) and (ΔE) vary with the alumina concentration dispersed in the epoxy matrix. The refractive index (n) for the composites was determined from the collected transmittance and reflectance spectra. The dispersion behavior of the refractive index is discussed in terms of the single oscillator model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y.W. Kim, W. Lee, B.K. Choi, Electrochim. Acta 45, 1473 (2000)

    Article  CAS  Google Scholar 

  2. P. Kamlesh, M.D. Mrigank, S. Markandey, S.L. Agrawal, J. Polym. Res. 17, 127 (2010)

    Article  Google Scholar 

  3. C. Stoloff, T. Liu, S.C. Deevi, Emerging applications of intermetallics. Intermetallics 8, 1313 (2000)

    Article  CAS  Google Scholar 

  4. N.N. Rozik, J.N. Asaad, B.A. Iskander, S.L. Abd-El-Messieh, J. Rein, Plas. Comp. 28, 2817 (2009)

    Article  CAS  Google Scholar 

  5. P.L. The, M. Mariatti, H.M. Akil, C.K. Yeoh, K.N. Seetharamu, A.N. Wagiman, K.S. Beh, Mater. Lett. 6, 2156 (2007)

    Google Scholar 

  6. B. Ellis, Chemistry and technology of epoxy resins (Chapman & Hall, London, 1993)

    Book  Google Scholar 

  7. F. El-Tantawy, K. Kamada, H. Ohnabe, Mater. Lett. 57, 242 (2002)

    Article  CAS  Google Scholar 

  8. G.A. Kontos, A.L. Soulintzis, P.K. Karahaliou, G.C. Psarras, S.N. Georga, C.A. Krontiras, M.N. Pisanias, Express Polym. Lett. 1, 781 (2007)

    Article  CAS  Google Scholar 

  9. Z.M. Elimat, A.M. Zihlif, G. Ragosta, Physica B Cond. Matter. 405, 3756 (2010)

    Article  CAS  Google Scholar 

  10. R. Murri, L. Schiavulli, N. Pinto, T. Ligonzo, J. Non-Cryst, Solids. 139, 60 (1992)

    CAS  Google Scholar 

  11. H.M. Zidan, M. Abu-Elnader, Physica B: Cond. Matter. 355, 308 (2005)

    Article  CAS  Google Scholar 

  12. S.F. Oboudi, J. Al-Nahrain Univ. 14, 103 (2011)

    Google Scholar 

  13. Z.M. Elimat, A.M. Zihlif, K.I. Schulte, A. de la Vega, G. Ragosta, J. Thermoplas. Comp. Mater. Published online (2011). doi:10.1177/0892705711419879

  14. K. Prabakar, A.K. Narayandass, D. Mangalaraj, Cryst. Res. Technol. 37, 1094 (2002)

    Article  CAS  Google Scholar 

  15. A. Ayad, S. Saq’an, Y. Ramadin, A. Zihlif, J. Thermoplast. Compos. Mater. 19, 531 (2006)

    Article  Google Scholar 

  16. C.C. Psarras, E. Manolakaki, G.M. Tsangaris, Compos. Part A Appl. Sci. Manuf. 33, 375 (2002)

    Article  Google Scholar 

  17. B. Hussien, Eur. J. Sci. Res. 52, 236 (2011)

    Google Scholar 

  18. S. Elliot, The Physics and Chemistry of Solids (Wiley, New York, 1998)

    Google Scholar 

  19. E. Hecht, H. Zajak, Optics (Addison Wesley, London, 1974)

    Google Scholar 

  20. N.F. Mott, E.A. Davic, Electronic Processes in Non Crystalline Materials, 2nd edn. (Oxford University press, New York, 1979)

    Google Scholar 

  21. F. Urbach, Phys. Rev. 92, 1324 (1953)

    Article  CAS  Google Scholar 

  22. A.K. Sharma, C.H. Ramu, Mater. Lett. 11, 128 (1991)

    Article  CAS  Google Scholar 

  23. V. Raja, A.K. Sarma, R. Narasimha, Mater. Lett. 57, 4678 (2003)

    Article  CAS  Google Scholar 

  24. Y. Ramadin, M. Ahmad, A. Zihlif, S. Saq’an, J. Thermoplastic. Compos. Mater. 13, 451 (2000)

    Google Scholar 

  25. K. Yoshino, Y. Manada, K. Sawada, S. Morita, H. Takahashi, R. Sugimoto, M. Onoda, J. Phys. Soc. Jpn. 58, 1320 (1989)

    Article  CAS  Google Scholar 

  26. F. Yakuphanoglua, S. Ilican, M. Caglar, Y. Caglar, J. Optoelectron. Adv. Mater. 9, 2180 (2007)

    Google Scholar 

  27. S.H. Wemple, M. DiDomenico, Phys. Rev. B 3, 1338 (1971)

    Article  Google Scholar 

  28. J.I. Pankove, Optical Processes in Semiconductors (Dover PublicationsInc, New York, 1971)

    Google Scholar 

  29. P. Sharma, V. Sharma, S.C. Katyal, Chalcogenide. Letters 3, 73 (2006)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Awwad Zihlif.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Bayer, R., Zihlif, A., Lahlouh, B. et al. AC electrical and optical characterization of epoxy–Al2O3 composites. J Mater Sci: Mater Electron 24, 2866–2872 (2013). https://doi.org/10.1007/s10854-013-1184-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1184-4

Keywords

Navigation