Skip to main content
Log in

On the formation of voids, etched holes, and GaO particles configuration during the nanowires growth by VLS method on GaAs substrate

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The nanowires grown on GaAs semiconductor substrate play very important roles in nanoelectronics, optoelectronics, and sensors. The nanowires can be produced by many methods among the existing methods of nanowires growth on GaAs semiconductor, the vapor–liquid–solid (VLS) method appears to be simple, low cost, and popular. However, this method in practice requires further investigations concerning the growth mechanisms, size effects, and the role of Au catalyst metal diffusion, as well as the effect of technological conditions. Several undesired phenomena, which strongly influence the morphologies, features, and applications of the grown nanowires, can occur as the result of using thick Au catalyst layers, high growth temperatures, and/or small vapor volume in the closed ampoule. This paper aims to examine simultaneous formation of voids, etched holes, and GaO particles along with the nanowires grown by VLS method on GaAs substrate. As the result, typical technological conditions for the nanowires growth with better characterizations are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C.N.R. Rao, F.L. Deepak, G. Gundiah, A. Govindaraj, Inorganicnanowires. Prog. Solid State Chem. 31, 5–147 (2003), www.elsevier.nl/locate/pssc

  2. http://www.SemiconductorNanowires, Nanoscale Electronics and optoelectronics, Part 2 and Part 3 (Nanotechnology)

  3. B. Bhushan, Semiconductoring nanowires & nanorods: synthesis, properties & applications, Handbook of nanotechnology (Springer, New York, 2004), part 4. nanowires, pp. 99–144

  4. X. Duan, J. Wang, C.M. Lieber, Synthesis and optical properties of Galium arsenide nanowires. Appl. Phys. Lett. 76(9), 1116–1118 (2000)

    Article  CAS  Google Scholar 

  5. Y. Lu, J. Zhong, T. Steiner (Eds.), Semiconductor nanostructures for optoelectronic applications (Artech House, Inc., Norwood, 2004), pp. 191–192. ISBN 978-1-580-53751-3

  6. J. Kim, Nanodevices by using semiconductor nanowires (University of Texas at Austin, TX, 2004), pp. 1–11

    Google Scholar 

  7. R.S. Wagner, W.C. Ellis, Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4(5), 89 (1964). doi:10.1063/1.1753975

    Article  CAS  Google Scholar 

  8. http://www/file, Au–Si droplet catalyzing whisker growth—droplet Formation.png

  9. http://www/en.wikipedia.org/wifi-Vapor-liquid-solidmethod

  10. R.S. Wagner, A.P. Levitt, Whisker technology (Wiley-Interscience, New York, 1975). ISBN 0-4715-3150-2

    Google Scholar 

  11. V. Schmidt, S. Senz, U. Gösele, The shape of epitaxially grown silicon nanowires and the influence of line tension. Appl. Phys. A 80, 445–450 (2005). doi:10.1007/s00339-004-3092-1

    Article  CAS  Google Scholar 

  12. S.A. Dayeh, E.T. Yu, D. Wang, Excess indium and substrate effects on the growth of InAs nanowires. Small3 1683 (2007). doi:10.1002/smll.200700338

  13. S.A. Dayeh, E.T. Yu, D. Wang, III–V Nanowire growth mechanism: V/III ratio and temperature effects. Nano Lett. 7(8), 2486–2490 (2007)

    Article  CAS  Google Scholar 

  14. A.I. Persson, M.W. Larsson, S. Stenström, B. Jonas Ohlsson, L. Samuelson, L.R. Wallenberg, Solid-phase diffusion mechanism for GaAs nanowire growth. Lett. Nat. Mater. 3, 678–681 (2004). doi:10.1038/nmat1220

    Google Scholar 

  15. J. B. Hannon, S. Kodambaka, F. M. Ross, R. M. Tromp, The influence of the surface migration of gold on the growth of silicon nanowires. Letters 440 (2006) doi:10.1038/natureb04574, Nature 440(2), 69–71 (2006)

    Google Scholar 

  16. P. Cheyssac, M. Sacilotti, Vapor-liquid-solid mechanisms: challenges for nanosized quantum cluster/dot/wire materials. J. Appl. Phys. 100, 044315 (2006) 044315-1. doi:10.1063/1.2236163

    Google Scholar 

  17. R.S. Dowdy, D.A. Walko, X. Li; Relationship between planar GaAs nanowire growth direction and substrate Orientation. IOP Publishing, Nanotechnology 24, 6 (2013) 035304. doi:10.1088/0957-4484/24/3/035304. Online at stacks.iop.org/Nano/24/035304

  18. H. Xu, Y. Guo, W.Sun, Z. Liao, T. Burgess, H. Lu, Q. Gao, H.H. Tan, C. Jagadish, J. Zou, Quantitative study of GaAs nanowires catalyzed by Au film of different thicknesses. Nano Expr. http://www.nanoscalereslett.com/content/7/1/589

  19. D.K. An, N.X. Chung, P.H. Trang, H. Van Vuong, P. V. Phong, P.A. Tuan, On growth mechanisms and dynamic simulation of growth process based on the experimental results of nanowire growth by VLS method on semiconductor substrates. IOP Publishing, J. Phys. Conf. Ser. 187 (2009) 012052 doi:10.1088/1742-6596/187/1/012052

  20. K.A. Dao, A.T. Phan, H.M. Do, T.H. Luu, M. Falke, M. MacKenzie, The influences of technological conditions and Au cluster islands on morphology of Ga2O3 nanowires grown by VLS method on GaAs substrate. J. Mater. Sci. Mater. Electron. 22(2), 204–216 (2011). doi:10.1007/s10854-010-0115-x

    Article  CAS  Google Scholar 

  21. D.K. An, D.D. Khang, P.A. Tuấn, N.T. Dai, D.H. Manh, The effects of Au surface diffusion to droplets/cluster formation and nanowire growth on GaAs substrate using VLS method. J. Mater. Sci. Mater. Electron. ISSN 0975-4522. doi:10.1007/s10854-012-0704-y

  22. N. T. Dai, D. D. Khang, D. H. Manh, P. A. Tuan, D. K. An, On abnormal phenomena concerning Au catalyst metal and technological conditions during the nanowires growth on GaAs semiconductor substrate by VLS method. Procedings of the third international Workshop on nanotechnology and application (IWNA2011), (Vung tau, Vietnam) 5–7 November 7–9, 2011, pp. 524–527

  23. T.G. Andersson, S.P. Svensson, The formation of the Au-GaAs (001) interface. Surf. Sci. 168, 301–308 (1986)

    Article  CAS  Google Scholar 

  24. L.J. Brillson, Atomic Modulation of Interdiffusion at Au-GaAs Interfaces. Phys. Rev. Lett. 44(10), 667–670 (1980)

    Article  CAS  Google Scholar 

  25. Z. Liliental-Weber, J. Washburn, N. Newman, W.E. Spicer, E.R. Weber, Morphology of Au/GaAs interfaces. Appl. Phys. Lett. 49(22), 1514 (1986)

    Article  CAS  Google Scholar 

  26. V.G. Weizer, N.S. Fatemi, The interaction of gold with gallium arsenide. J. Appl. Phys. 64 (9), 4618 (1966), 0021-8979/66/214618

    Google Scholar 

  27. A.J. Barcz, Kinetic model of AuGaAs interface reaction. J. Appl. Phys. 74, 3172 (1993). doi:10.1063/1.354586

    Article  CAS  Google Scholar 

  28. A.J. Barcz, E. Kaminska, A. PioTrowska, Fundameatal and practical aspects of allowing encapsulated gold-based contacts to GaAs. Thin Solid Films 149, 251–260 (1987)

    Article  CAS  Google Scholar 

  29. K. Tateno, H. Gotoh, H. Nakano, Nanoholes formed by reverse VLS mechanism. Jpn. J. Appl. Phys. 44, L428 (2005)

    Article  CAS  Google Scholar 

  30. T. Akiyama, Y. Haneda, K. Nakamura, T. Ito, Role of Au/GaAs(111) interface on the wurtzite-structure formation during GaAs nanowire growth by vapor-liquid-solid mechanism. Phys. Rev. Ser. B 79(15), 1534. http://hdl.handle.net/10076/112

  31. S.A. Dayeh, D. Susac, K.L. Kavanagh, E.T. Yu, D. Wang, Structural and room-temperature transport properties of zinc blende and wurtzite InAs nanowires. Adv. Funct. Mater. 19, 2102–2108 (2009). doi:10.1002/adfm.200801307

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Authors would like to express their thanks to the NAFOSTED for funding the basic research project (103.02-2010.40) during 2011–2012 to carry out this study. This work is carried out at the Key Lab of electronic materials and devices in IMS-VAST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khac An Dao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dao, K.A., Nguyen, T.D., Phan, A.T. et al. On the formation of voids, etched holes, and GaO particles configuration during the nanowires growth by VLS method on GaAs substrate. J Mater Sci: Mater Electron 24, 2513–2520 (2013). https://doi.org/10.1007/s10854-013-1126-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1126-1

Keywords

Navigation