Skip to main content
Log in

Microwave assisted hydrothermal synthesis of mesoporous SnO2 nanoparticles for ethanol sensing and degradation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report the synthesis of mesoporous SnO2 nanoparticles by a microwave assisted hydrothermal process and their application as a gas sensor. The synthesized materials were characterized by transmission electron microscopy, X-ray diffraction technique, X-ray photoelectron spectroscopy, and Photoluminescence spectroscopy. As the results, we found that as-synthesized SnO2 was synthetic Cassiterite with tetragonal structure and spherical in shape with the primary crystallite size of 6–8 nm, and the SnO2 embedded material was mesoporous with average pore sizes of ≈15 nm. Moreover, this material showed excellent thermal stability from 80 to 800 °C and its crystal structure after heat treatment was preserved even at ultrahigh temperature of 800 °C. We demonstrated that this material could be used for detection of the ethanol gas because of its stability and nanoscale size at high temperature. Additionally our investigations also suggest that the processed materials can be used for the photocatalytic oxidation of ethanol. These results propose the potential application of the material for a sense and shoot kind of approach for indoor air purification in pharmaceutical and fermentation monitoring and vehicular control through breath analyzer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. Behrens, Angew. Chem. Int. Ed. Engl. 35, 515 (1996)

    Article  CAS  Google Scholar 

  2. U. Ciesla, F. Schüth, Microporous Mesoporous Mater. 27, 131 (1999)

    Article  CAS  Google Scholar 

  3. L. Li, C. Liu, J. Phys. Chem. C 114, 1444 (2010)

    Article  CAS  Google Scholar 

  4. A. Taguchi, F. Schüth, Microporous Mesoporous Mater. 77, 1 (2005)

    Article  CAS  Google Scholar 

  5. V. Nechita, J. Schoonman, V. Musat, Phys. Status Solidi A 209, 153 (2012)

    Article  CAS  Google Scholar 

  6. F. Torney, B.G. Trewyn, V.S.Y. Lin, K. Wang, Nat. Nanotech. 2, 295 (2007)

    Article  CAS  Google Scholar 

  7. P. Misaelides, Microporous Mesoporous Mater. 144, 15 (2011)

    Article  CAS  Google Scholar 

  8. K. Niesz, P. Yang, G.A. Somorjai, Chem. Comm. 2005, 1986 (2005)

    Article  Google Scholar 

  9. L. Wang, Z. Wang, J. Zhao, Z. Yuan, H. Yang, M. Zhao, Mater. Chem. Phys. 59, 171 (1999)

    Article  CAS  Google Scholar 

  10. J.W. Park, D.S. Jung, M.E. Seo, S.Y. Kim, W.J. Moon, C.H. Shin, G. Seo, Microporous Mesoporous Mater. 112, 458 (2008)

    Article  CAS  Google Scholar 

  11. C.N.R. Rao, A. Govindaraj, S.R.C. Vivekchand, Ann. Rep. Prog. Chem. A 102, 20 (2006)

    Article  CAS  Google Scholar 

  12. P. Periyat, N. Leyland, D.E. McCormack, J. Colreavy, D. Corr, S.C. Pillai, J. Mater. Chem. 20, 3650 (2010)

    Article  CAS  Google Scholar 

  13. K.H. Lee, S.W. Song, Appl. Mater. Interface 3, 3697 (2011)

    Article  CAS  Google Scholar 

  14. M. Batzill, U. Diebold, Prog. Surf. Sci. 79, 47 (2005)

    Article  CAS  Google Scholar 

  15. S. Wu, H. Cao, S. Yin, X. Liu, X. Zhang, J. Phys. Chem. C 113, 17893 (2009)

    Article  CAS  Google Scholar 

  16. R. Triantafyllopoulou, C. Tsamis, Phys. Status Solidi A 205, 2643 (2008)

    Article  CAS  Google Scholar 

  17. J.H. Lee, N.G. Park, Y.J. Shin, Solar Energy Mater. Solar Cells 95, 179 (2011)

    Article  CAS  Google Scholar 

  18. L. Shi, H. Lin, Langmuir 26, 18718 (2010)

    Article  CAS  Google Scholar 

  19. R. Demir-Cakan, Y.S. Hu, M. Antonietti, J. Maier, M.M. Titirici, Chem. Mater. 20, 1227 (2008)

    Article  CAS  Google Scholar 

  20. S. Fujihara, T. Maeda, H. Ohgi, E. Hosono, H. Imai, S.H. Kim, Langmuir 20, 6476 (2004)

    Article  CAS  Google Scholar 

  21. T. Krishnakumar, R. Jayaprakash, M. Parthibavarman, A.R. Phani, V.N. Singh, B.R. Mehta, Mater. Lett. 63, 896 (2009)

    Article  CAS  Google Scholar 

  22. M. Krishna, S. Komarneni, Ceram. Inter. 35, 3375 (2009)

    Article  CAS  Google Scholar 

  23. G.R. Patzke, Y. Zhou, R. Kontic, F. Conrad, Angew. Chem. Int. Ed. 50, 826 (2011)

    Article  CAS  Google Scholar 

  24. F. Gu, S.F. Wang, C.F. Song, M.K. Lu, Y.X. Qi, G.J. Zhou, D. Xu, D.R. Yuan, Chem. Phys. Lett. 372, 451 (2003)

    Article  CAS  Google Scholar 

  25. S.Y. Lee, Y.H. Shin, Y. Kim, S. Kim, S. Ju, J. Lumin. 131, 2565 (2011)

    Article  CAS  Google Scholar 

  26. D.J. Norris, M.G. Bawendi, Phys. Rev. B 53, 16338 (1996)

    Article  CAS  Google Scholar 

  27. E.M. Wong, P.C. Searson, Appl. Phys. Lett. 74, 2939 (1999)

    Article  CAS  Google Scholar 

  28. A. Sharma, S. Kumar, R. Kumar, M. Varshney, K.D. Verma, Adv. Mater. Rapid Commun. 3, 1285 (2009)

    CAS  Google Scholar 

  29. D. Chen, L. Gao, J. Colloid Interface Sci. 279, 137 (2004)

    Article  CAS  Google Scholar 

  30. E.P. Domashevskaya, S.V. Ryabtsev, S.Y. Turishchev, V.M. Kashkarov, O.A. Chuvenkova, Y.A. Yurakov, Bull. Rus. Acad. Sci. Phys. 72, 504 (2008)

    Article  Google Scholar 

  31. F.A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry: A Comprehensive Text, 4th edn. (Wiley-Interscience, USA, 1980), p. 393

    Google Scholar 

  32. K.L. Cheng, Microchem. J. 82, 119 (2006)

    Article  CAS  Google Scholar 

  33. Y. Shimizu, A. Jono, T. Hyodo, M. Egashira, Sens. Actuators B 108, 56 (2005)

    Article  CAS  Google Scholar 

  34. N. Savage, M.S. Diallo, Nanomaterials and water purification: opportunities and challenges. J. Nanoparticle Res. 7, 331–342 (2005)

    Article  CAS  Google Scholar 

  35. N. Yamazoe, G. Sakai, K. Shimanoe, Catal. Survey Asia 7, 63 (2003)

    Article  CAS  Google Scholar 

  36. A. Dieguez, A. Romano-Rodriguez, A. Vila, J.R. Morante, J. Appl. Phys. 90, 1550 (2001)

    Article  CAS  Google Scholar 

  37. S. Sarmah, A. Kumar, Ind. J. Phys. 84, 1211 (2010)

    Article  CAS  Google Scholar 

  38. S. Das, S. Kar, S. Chaudhuri, J. Appl. Phys. 99, 1143030 (2006)

    Google Scholar 

  39. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, J. Appl. Phys. 79, 7983 (1996)

    Article  CAS  Google Scholar 

  40. S. Pokhrel, C.E. Simion, V.S. Teodorescu, N. Barsan, U. Weimar, Adv. Funct. Mater. 19, 1767 (2009)

    Article  CAS  Google Scholar 

  41. P. Sun, W. Zhao, Y. Cao, Y. Guan, Y. Sun, G. Lu, Cryst. Eng. Commun. 13, 3718 (2011)

    Article  CAS  Google Scholar 

  42. P.V. Kamat, R. Huehn, R.A. Nicolaescu, J. Phys. Chem. B 106, 788 (2002)

    Article  CAS  Google Scholar 

  43. D.E.D. Bois, US patent 4613845 (1986)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suraj K. Tripathy.

Additional information

Suraj K. Tripathy and Sandeep Kumar Jha previously in Department of Mechanical Engineering, Research Institute of Engineering and Technology, College of Engineering, Korea University, Seoul 136713, South Korea.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 918 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tripathy, S.K., Mishra, A., Jha, S.K. et al. Microwave assisted hydrothermal synthesis of mesoporous SnO2 nanoparticles for ethanol sensing and degradation. J Mater Sci: Mater Electron 24, 2082–2090 (2013). https://doi.org/10.1007/s10854-013-1062-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1062-0

Keywords

Navigation