Skip to main content
Log in

Ultra-thin BiFeO3 nanowires prepared by a sol–gel combustion method: an investigation of its multiferroic and optical properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Perovskite-type polycrystalline BiFeO3 nanowires, with 150 nm in length and 10 nm in diameter, were synthesized using a sol–gel combustion method at a relative low reactive temperature. The BiFeO3 nanowires exhibit a remarkably high saturation magnetization of 4.22 emu/g finite coercivity (177 Oe), and a enhanced Mr/Ms value about 0.22, which is independent on the synthesize temperature. The permittivity constant (ε′) and dielectric loss (0.01 at 0.4 MHz) of BiFeO3 nanowires are very low as compared to reported BiFeO3 bulk and film. In addition, BiFeO3 nanowires reveal a wide band gap of 2.5 eV measured from the UV–visible diffuse reflectance spectrum, which may be useful as a photoelectrode material and photocatalytic decomposition of contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Fiebig, J. Phys. D 38 R1232005

  2. E.K.H. Saije Phase transition in ferroelastic and co-elastic crystals: an introduction for mineralogists, material scientists and physicists (Cambridge University Press, Cambridge, 1990), p. 147

  3. N.A. Hill, J. Phys. Chem. B 104, 6694 (2000)

    Article  CAS  Google Scholar 

  4. P. Baettig, C. Ederer, N.A. Spaldin, Phys. Rev. B 72, 214105 (2005)

    Article  Google Scholar 

  5. S. Niitaka, M. Azuma, M. Takano, E. Nishibori, M. Takata, M. Sakata, Solid State Ionics 172, 557 (2004)

    Article  CAS  Google Scholar 

  6. J.M. Moreau, C. Michel, R. Gerson, W.J. James, J. Phys. Chem. Solids 32, 1315 (1971)

    Article  CAS  Google Scholar 

  7. F. Kubel, H. Schmid, Acta. Cryst. B 46, 698 (1990)

    Article  Google Scholar 

  8. I. Sosnowska, T. Paterlin-Neumaier, E. Steichele, J. Phys. C 15, 4835 (1982)

    Article  CAS  Google Scholar 

  9. R. Mazumder, P.S. Devi, D. Bhattacharya, P. Choudhury, A. Sen, M. Raja, Appl. Phys. Lett. 91, 062510 (2007)

    Article  Google Scholar 

  10. J.M. Wesselinowa, I. Apostolova, J. Appl. Phys. 104, 084108 (2008)

    Article  Google Scholar 

  11. T.J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbough, S.S. Wong, Nano. Lett. 7, 766 (2007)

    Article  CAS  Google Scholar 

  12. F. Gao, Y. Yuan, K.F. Wang, X.Y. Chen, F. Chen, J.M. Liu, Z.F. Ren, Appl. Phys. Lett. 89, 102506 (2006)

    Article  Google Scholar 

  13. J. Wei, D.S. Xue, Y. Xu, Script. Mater. 58, 45 (2008)

    Article  CAS  Google Scholar 

  14. J.M. Moreau, C. Michel, R. Gerson, W.J. James, J. Phys. Chem. Solids 32, 1315 (1971)

    Article  CAS  Google Scholar 

  15. I. Sosnowska, R. Przenioslo, P. Fischer, V.A. Murashov, J. Magn. Magn. Mater 160, 384 (1996)

    Article  CAS  Google Scholar 

  16. C. Ederer, N.A. Spaldin, Phys. Rev. B 71, 060401(R) (2005)

    Google Scholar 

  17. S.H. Xie, Li JY, R. Proksch, Y.M. Liu, Y.C. Zhou, Y.Y. Liu, Y. Ou, L.N. Lan, Y. Qiao, Appl. Phys. Lett. 93, 222904 (2008)

    Article  Google Scholar 

  18. H. Sitchai, T.B. Prasit, Y.W. Teerapon, Y. Rattikorn, M. Santi, Appl. Phys. Lett. 94, 062904 (2009)

    Article  Google Scholar 

  19. S. Kamba, D. Nuzhnyy, M. Savinov, J. Šebek, J. Petzelt, Phys. Rev. B 75, 024403 (2007)

    Article  Google Scholar 

  20. A. Jaiswal, R. Das, T. Maity, K. Vivekanand, S. Adyanthaya, P. Poddar, J. Phys. Chem. C 114, 12432 (2010)

    Article  CAS  Google Scholar 

  21. G.L. Yuan, L.W. Martin, R. Ramesh, A. Uedono, Appl. Phys. Lett. 95, 012904 (2009)

    Article  Google Scholar 

  22. S.M. Selbach, T. Tybell, M.A. Einarsrud, T. Grande, Chem. Mater. 19, 6478 (2007)

    Article  CAS  Google Scholar 

  23. M.A. Butler, J. Appl. Phys. 48, 1914 (1977)

    Article  CAS  Google Scholar 

  24. T. Takahashi, N. Kida, M. Tonouchi, Phys. Rev. Lett. 96, 117402 (2006)

    Article  Google Scholar 

  25. U.A. Joshi, J.S. Jang, P.H. Borse, J.S. Lee, Appl. Phys. Lett. 92, 242106 (2008)

    Article  Google Scholar 

  26. F. Gao, X.Y. Chen, K.B. Yin, S. Dong, Z.F. Ren, F. Yuan, T. Yu, Z.G. Zou, J.M. Liu, Adv. Mater 19, 2889 (2007)

    CAS  Google Scholar 

  27. P. Chen, Xu XS, C. Koenigsmann, A.C. Santulli, S.S. Wong, J.L. Musfeldt, Nano. Lett. 10, 4526 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Nos. 50701005, 50831002, 50802007), the Research Fund for the Doctoral Program of Higher Education of China (No. 200800081011), and the Fok Ying-Tong Education Foundation (No. 121046). This work was also supported by the National Basic Research Program of China (No. 2007CB936202) and the Key Grant Project of Chinese Ministry of Education (No. 309006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Miao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Miao, J., Zhang, X. et al. Ultra-thin BiFeO3 nanowires prepared by a sol–gel combustion method: an investigation of its multiferroic and optical properties. J Mater Sci: Mater Electron 23, 180–184 (2012). https://doi.org/10.1007/s10854-011-0379-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-011-0379-9

Keywords

Navigation