Skip to main content
Log in

Facile Synthesis, Characterization, Catalytic and Photocatalytic Activity of Multiferroic BiFeO3 Perovskite Nanoparticles

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

We report the synthesis of multiferroic BiFeO3 perovskite nanoparticles using the microwave combustion technique. Phase evolution is investigated by XRD, which confirms that the formation of a secondary α-Bi2O3 phase with a monoclinic structure along with the existing rhombohedral (BiFeO3) structure. The average crystalline size has been found at 50 nm. The optical band gap was calculated from the Tauc’s plot it has been found 2.18 eV. The appearances of FT-IR spectra revealed bands at 550 and 444 cm−1 were correlated to the rhombohedral stretching modes of BiFeO3 nanostructure. The surface morphology showed the formation of nanosized grains with pores. The magnetization-Field (M-H) hysteresis curves revealed the appearance of ferrimagnetic behavior at room temperature. The BET surface area of BiFeO3 perovskite nanoparticles was found 44.86 m2/g. The as-fabricated BiFeO3 perovskite nanoparticles were investigated for their superior catalytic activity in two applications, which include (i) Glycerol to formic acid oxidation in the liquid phase with a high efficiency of over 98 percent, (ii) Under visible light, the photocatalytic breakdown of rhodamine B achieved maximal efficiency (almost 99 percent). Finally, we concluded that the BiFeO3 perovskite nanoparticles exhibit high performance in future multifunctional devices is demonstrated by the simultaneous enhancement of catalytic and photocatalytic activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Haruna, I. Abdulkadir, S.O. Idris, Heliyon (2020). https://doi.org/10.1016/j.heliyon.2020.e03237.

  2. D.P. Dutta, B.P. Mandal, R. Naik, G. Lawes, A.K. Tyagi, J. Phys. Chem. C 117, 2382–2389 (2013)

    Article  CAS  Google Scholar 

  3. P. Modak, De. Lahiri, S.M. Sharma, J. Phys. Chem. C 120(15), 8411–8416 (2016)

    Article  CAS  Google Scholar 

  4. W. Mao, X. Wang, L. Chu, Y. Zhu, Qi. Wang, J. Zhang, J. Yang, X. Li, W. Huang, Phys. Chem. Chem. Phys. 18, 6399–6405 (2016)

    Article  CAS  PubMed  Google Scholar 

  5. L.F. RenqingGuo, W. Dong, F. Zheng, M. Shen, J. Mater. Chem. 21, 18645–18652 (2011)

    Article  Google Scholar 

  6. M. Agila, S. Krithiga, Int. J. Eng. Sci. Manag. Res. 2, 475–482 (2019)

    Google Scholar 

  7. S. Haq, W. Rehman, M. Rehman, J. Inorg. Organomet. Polym. Mater. 30, 1197 (2020)

    Article  CAS  Google Scholar 

  8. S. Shoukat, S. Haq, W. Rehman, M. Waseem, M. Hafeez, S.U. Din, Zain-ul-Abdin, P. Ahmad, M. Ur Rehman, A. Shah, B. Khan, J. Inorg. Organomet. Polym. Mater. 1 (2020).

  9. H. Ramezanalizadeh, F. Manteghi, RSC Adv. 6, 99096–99104 (2016)

    Article  CAS  Google Scholar 

  10. M. Sukumar, L. John Kennedy, J. Judith Vijaya, B. Al-Najar, M. Bououdina, New J. Chem. 42, 18128–18142 (2018)

    Article  CAS  Google Scholar 

  11. S. Wang, Da. Chen, F. Niu, N. Zhang, L. Qin, Y. Huang, J. Alloys Compd. 688, 399–406 (2016)

    Article  CAS  Google Scholar 

  12. B. Safizade, S.M. Masoudpanah, M. Hasheminiasari, A. Ghasemi, RSC Adv. 8, 6988–6995 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. S. Royer, D. Duprez, F. Can, X. Courtois, C. Batiot-Dupeyrat, S. Laassiri, H. Alamdari, Chem. Rev. 114, 10292–10368 (2014)

    Article  CAS  PubMed  Google Scholar 

  14. J. Zhu, H. Li, L. Zhong, P. Xiao, X. Xu, X. Yang, Z. Zhao, J. Li, ACS Catal. 4, 2917–2940 (2014)

    Article  CAS  Google Scholar 

  15. S.-M. Lam, J.-C. Sin, A.R. Mohamed, Mater. Res. Bull. https://doi.org/10.1016/j.materresbull.2016.12.052.

  16. A. Civera, M. Pavese, G. Saracco, V. Specchia, Catal. Today 83, 199–211 (2003)

    Article  CAS  Google Scholar 

  17. M.A. Pena, J.L.G. Fierro, Chem. Rev. 101, 1981–2017 (2001)

    Article  CAS  PubMed  Google Scholar 

  18. C.-J. Ma, Na. Li, L.-L. Chen, H. Chen, W.-L. Song, J. Phys. Chem. Lett. 12, 4104–4111 (2021)

    Article  CAS  PubMed  Google Scholar 

  19. J. Zhu, Z. Zhao, D. Xiao, J. Li, X.G. Yang, Y. Wu, Ind. Eng. Chem. Res. 44, 4227–4233 (2005)

    Article  CAS  Google Scholar 

  20. H. Falco´n, M.J. Martinez-Lope, J.A. Alonso, J.L.G. Fierro, Appl. Catal 26, 131–142 (2000)

    Article  Google Scholar 

  21. Y. Teraoka, T. Harada, S. Kagawa, J. Chem. Soc Faraday Trans. 94, 1887–1891 (1998)

    Article  CAS  Google Scholar 

  22. V.C. Belessi, T.V. Bakas, C.N. Costa, A.M. Efstathiou, P.J. Pomonis, Appl. Catal. B 28, 13–18 (2000)

    Article  CAS  Google Scholar 

  23. O.P. Baipai, S. Mandal, R. Ananthakrishnan, P. Mandal, D. Khastgir, S. Chattopadhyay, New J. Chem. 42, 10712–10723 (2018)

    Article  Google Scholar 

  24. Ahmed Shawky, Soha M. Albukhari, M. S. Amin, Z. I. Zaki, J. Inorg. Organomet. Polym. Mater. https://doi.org/10.1007/s10904-021-02047-5.

  25. V. Beena, S. Ajitha, S. L. Rayar, C. Parvathiraja, Karthik Kannan, Geetha Palani, J. Inorg. Organomet. Polym. Mater. https://doi.org/10.1007/s10904-021-02053-7.

  26. Rama Jaiswal, Kalluri V. S. Ranganath, J. Inorg. Organomet. Polym. Mater. https://doi.org/10.1007/s10904-021-02062-6

  27. G. Divya, S. Sivakumar, D. Sakthi, A. Priyadharsan, V. Arun, R. Kavitha, S. Boobas, J. Inorg. Organomet. Polym. Mater. https://doi.org/10.1007/s10904-021-02068-0.

  28. M. Sukumar, L. John Kennedy, J. Judith Vijaya, B. Al-Najar, M. Bououdina, Mater Sci. Semicond. Process. 100, 225–235 (2019)

    Article  CAS  Google Scholar 

  29. M. Sun, L. Bai, W. Ma, Y. Liu, J. Zhang, J. Yang, ACS Omega 5, 29292–29299 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. M. Irshad, Q. Ain, M. Zaman, M.Z. Aslam, N. Kousar, M. Asim, M. Rafique, K. Siraj, A.N. Tabish, M. Usman, M.H. Farooq, M.A. Assiri, M. Imran, RSC Adv. 12, 7009 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. S.M. Selbach, M.-A. Einarsrud, T. Tybell, T. Grande, J. Am. Ceram. Soc. 90, 3430–3434 (2007)

    Article  CAS  Google Scholar 

  32. T. Gao, Z. Chen, F. Niu, D. Zhou, Q. Huang, Y. Zhu, L. Qin, X. Sun, Y. Huang, J. Alloys Compd. 648, 564–570 (2015)

    Article  CAS  Google Scholar 

  33. S. Li, G. Zhang, H. Zheng, N. Wang, Y. Zheng, P. Wang, RSC Adv. 6, 82439–82446 (2016)

    Article  CAS  Google Scholar 

  34. M. Sukumar, L. John Kennedy, J. Nanosci. Nanotechnol. 19, 826–832 (2019)

    Article  CAS  PubMed  Google Scholar 

  35. M. Sukumar, L. John Kennedy, J. Judith Vijaya, B. Al-Najar, M. Bououdina, G. Mudhana, Vacuum 167, 407–415 (2019)

    Article  CAS  Google Scholar 

  36. J.L. Ortiz-Quiñonez, D. Díaz, I. Zumeta-Dubé, H. Arriola-Santamaría, I. Betancourt, P. Santiago-Jacinto, N. Nava-Etzana, Inorg. Chem. 52(10306), 10317 (2013)

    Google Scholar 

  37. A. Mukherjee, S. Chakrabarty, N. Kumari, Su. Wei-Nien, S. Basu, ACS Omega 3, 5946–5957 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. M. Sukumar, L. John Kennedy, J. Judith Vijaya, B. Al-Najar, M. Bououdina, Ceram. Int. 44, 18113–18122 (2018)

    Article  CAS  Google Scholar 

  39. S. Chaturvedi, R. Das, P. Poddar, S. Kulkarni, RSC Adv. 5, 23563–23568 (2015)

    Article  CAS  Google Scholar 

  40. K.P. Remya, R. Rajalakshmi, N. Ponpandian, Nanoscale Adv. 2, 2968–2976 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. D.P. Dutta, B.P. Mandal, G.L. RatnaNaik, A.K. Tyagi, J. Phys. Chem. 117, 2382–2389 (2013)

    CAS  Google Scholar 

  42. S. Briceno, H. Del Castillo, V. Sagredo, W. Bramer-Escamilla, P. Silva, Appl. Surf. Sci. 263, 100–103 (2012)

    Article  CAS  Google Scholar 

  43. T.-J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, S.S. Wong, Nano Lett. 7, 766–772 (2007)

    Article  CAS  PubMed  Google Scholar 

  44. K.A. Cychosz, R. Guillet-Nicolas, J. Garcia-Marinez, M. Thommes, Chem. Soc. Rev. 46, 389–414 (2017)

    Article  CAS  PubMed  Google Scholar 

  45. S. Thanasilp, J.W. Schwank, V. Meeyoo, S. Pengpanich, M. Hunsom, Chem. Eng. J. 275, 113–124 (2015)

    Article  CAS  Google Scholar 

  46. Z.I. Ishak, N.A. Sairi, Y. Alias, M.K.T. Aroua, R. Yusoff, Chem. Eng. J. 297, 128–138 (2016)

    Article  CAS  Google Scholar 

  47. K.-X. Li, Li. Chen, Z.-C. Yan, H.-L. Wang, Catal. Lett. 139, 151–156 (2010)

    Article  CAS  Google Scholar 

  48. M. Rosiene, A. Arcanjo, I.J. Silva, E. Rodríguez-Castellón, A. Infantes-Molina, R.S. Vieira, Catal Today 279, 317–326 (2017)

    Article  Google Scholar 

  49. L. Yang, X. Li, P. Chen, Z. Hou, Chin. J. Catal. 40, 1020–1034 (2019)

    Article  CAS  Google Scholar 

  50. I. Lapenaite, A. Ramanaviciene, A. Ramanavicius, Crit. Rev. Anal. Chem. 36, 13–25 (2006)

    Article  CAS  Google Scholar 

  51. C.H. Lam, A.J. Bloomfield, P.T. Anastas, Green Chem. 19, 1958–1968 (2017)

    Article  CAS  Google Scholar 

  52. M.H. Haider, N.F. Dummer, D.W. Knight, R.L. Jenkins, M. Howard, J. Moulijn, S.H. Taylor, G.J. Hutchings, Nat. Chem. 7, 1028–1032 (2015)

    Article  CAS  PubMed  Google Scholar 

  53. M. Sundararajan, L.J. Kennedy, J. Environ. Chem. Enginner. 5, 4075–4092 (2017)

    Article  CAS  Google Scholar 

  54. C. Singh, A. Goyal, S. Singhal, Nanoscale 6, 7959–7970 (2014)

    Article  CAS  PubMed  Google Scholar 

  55. M. Sundararajan, V. Sailaja, L.J. Kennedy, J.J. Vijaya, Ceram. Inter. 43, 540–548 (2017)

    Article  CAS  Google Scholar 

  56. X. Zhou, H. Yang, C. Wang, X. Mao, Y. Wang, Y. Yang, G. Liu, J. Phys. Chem. 114, 17051–17061 (2010)

    CAS  Google Scholar 

  57. T.K. Dixit, S. Sharma, A.S.K. Sinha, Inorg. Chem. Commun. 117, 107945 (2020)

    Article  CAS  Google Scholar 

  58. C. Tudisco, L. Pulvirenti, P. Cool, G.G. Condorelli, Dalton Trans. (2020). https://doi.org/10.1039/C9DT04514G

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors extend their sincere appreciation to the Researchers Supporting Project number (RSP-2022/55), King Saud University, Riyadh, Saudi Arabia for financial support.

Funding

The funded was provided by King Saud University, Grant No. (RSP-2022/55).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Sukumar, M. Sundararajan or Mohd Ubaidullah.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathankumar, K., Sukumar, M., Dash, C.S. et al. Facile Synthesis, Characterization, Catalytic and Photocatalytic Activity of Multiferroic BiFeO3 Perovskite Nanoparticles. J Inorg Organomet Polym 32, 3476–3487 (2022). https://doi.org/10.1007/s10904-022-02382-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02382-1

Keywords

Navigation