Skip to main content
Log in

A new theory of doped manganites exhibiting colossal magnetoresistance

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Rare earth manganites doped with alkaline earths, namely Re1-xAxMnO3, exhibit colossal magnetoresistance, metal insulator transitions, competing magnetic, orbital and charge ordering, and many other interesting but poorly understood phenomena. In this article I outline our recent theory based on the idea that in the presence of strong Jahn-Teller, Coulomb and Hund’s couplings present in these materials, the low-energy electronic states dynamically reorganize themselves into two sets: one set (ℓ) which are polaronic, i.e., localized and accompanied by large local lattice distortion, and another (b) which are non-polaronic and band-like. The coexistence of the radically different ℓ andb states, and the sensitive dependence of their relative energies and occupation upon dopingx, temperatureT, magnetic fieldH, etc., underlies the unique effects seen in manganites. I present results from strong correlation calculations using dynamical mean-field theory and simulations on a new 2-fluid model which accord with a variety of observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S Jinet al, Science 264, 413 (1994)

    Article  ADS  Google Scholar 

  2. C N R Rao and B Raveau (eds),Colossal magnetoresistance, charge ordering and related properties of manganese oxides (World Scientific, Singapore, 1998)

    Google Scholar 

  3. Y Tokura (ed.),Colossal magnetoresistance oxides (Gordon and Breach, New York, 2000)

    Google Scholar 

  4. C N R Rao, Anthony Arulraj, A K Cheetham and B Raveau,J. Phys. Condens. Matter 12, R83 (2000)

    Article  ADS  Google Scholar 

  5. M B Salamon and M Jaime,Rev. Mod. Phys. 73, 583 (2001)

    Article  ADS  Google Scholar 

  6. E Dagotto, T Hotta and A Moreo,Phys. Rep. 344, 1 (2001)

    Article  ADS  Google Scholar 

  7. Neil Mathur and Peter Littlewood,Phys. Today 56, 25 (2003)

    Article  ADS  Google Scholar 

  8. H Y Hwanget al, Phys. Rev. Lett. 75, 914 (1995)

    Article  ADS  Google Scholar 

  9. J P Attfield,Chemistry of Materials 10, 3239 (1998)

    Article  Google Scholar 

  10. N A Babushkinaet al, Nature (London) 391, 159 (1998)

    Article  ADS  Google Scholar 

  11. M Uehara, S Mori, C M Chen and S W Cheong,Nature (London) 399, 560 (1999)

    Article  ADS  Google Scholar 

  12. D Loucaet al, Phys. Rev. B56, R8475 (1997)

    ADS  Google Scholar 

  13. T Egami, inStructure and bonding edited by J B Goodenough, Vol. 98, p. 115 (2001)

  14. C Meneghiniet al, J Phys. Condens. Matter. 14, 1967 (2002)

    Article  ADS  Google Scholar 

  15. R H Heffneret al, Phys. Rev. Lett. 85, 3285 (2000)

    Article  ADS  Google Scholar 

  16. M Fäthet al, Science 285, 1540 (1999)

    Article  Google Scholar 

  17. M Uehara, K H Kim and S W Cheong, private communication

  18. S Satpathy, Z S Popovic and F R Vukajlovic,Phys. Rev. Lett. 76, 960 (1996)

    Article  ADS  Google Scholar 

  19. D D Sarmaet al, Phys. Rev. Lett. 75, 1126 (1995)

    Article  ADS  Google Scholar 

  20. A J Millis,Philos. Trans. R. Soc. London Ser. A 356, 1473 (1998)

    ADS  Google Scholar 

  21. J Kanamori,J. Appl. Phys. 31, 14S (1960)

    Article  ADS  Google Scholar 

  22. N Furukawa,J. Phys. Soc. Jpn. 64, 2734 (1995)

    Article  ADS  Google Scholar 

  23. A J Millis, R Mueller and B I Shraiman,Phys. Rev. B54, 5405 (1996)

    ADS  Google Scholar 

  24. A C M Green and D M Edwards,J. Magn. Magn. Mater. 226, 886 (2001)

    Article  ADS  Google Scholar 

  25. H Roder, Jun Zang and A R Bishop,Phys. Rev. Lett. 76, 1356 (1996)

    Article  ADS  Google Scholar 

  26. T V Ramakrishnan, H R Krishnamurthy, S R Hassan and G Venketeswera Pai,Phys. Rev. Lett. 92, 157203 (2004), cond-matt/0308376

    Article  ADS  Google Scholar 

  27. G Venketeswera Pai, S R Hassan, H R Krishnamurthy and T V Ramakrishnan,Europhys. Lett. 64, 696 (2003), cond-matt/0309493

    Article  ADS  Google Scholar 

  28. T V Ramakrishnan, H R Krishnamurthy, S R Hassan and G Venketeswera Pai, cond-matt/0308396, appeared as a chapter inColossal Magnetoresistive Manganites edited by T Chatterji (Kluwer Academic Publishers, Dordrecht, Netherlands)

  29. O Cepas, H R Krishnamurthy and T V Ramakrishnan,Phys. Rev. Lett. (in press) cond-mat/0412651, and to be published

  30. Vijay B Shenoy, Tribikram Gupta, H R Krishnamurthy and T V Ramakrishnan (to be published)

  31. T Mizokawa, D I Khomskii and G A Sawatzky,Phys. Rev. B63, 024403 (2001)

    ADS  Google Scholar 

  32. See also A J Millis,Phys. Rev. B55, 6405 (1997)

    ADS  Google Scholar 

  33. L M Falicov and J C Kimball,Phys. Rev. Lett. 22, 997 (1969)

    Article  ADS  Google Scholar 

  34. A Georges, G Kotliar, W Krauth and M J Rozenberg,Rev. Mod. Phys. 68, 13 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  35. P Daiet al, Phys. Rev. B61, 9553 (2000)

    ADS  Google Scholar 

  36. J J Neumeier, M F Hundley, J D Thompson and R H Heffner,Phys. Rev. B52, R7006 (1995)

    ADS  Google Scholar 

  37. Y Okimotoet al, Phys. Rev. B55, 4206 (1997)

    ADS  Google Scholar 

  38. A Maignan, C Martin, F Damay and B Raveau,Phys. Rev. B58, 2758 (1998)

    ADS  Google Scholar 

  39. For e.g., see G M Zhaoet al, Phys. Rev. B63, 060402 (2001)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishnamurthy, H.R. A new theory of doped manganites exhibiting colossal magnetoresistance. Pramana - J Phys 64, 1063–1074 (2005). https://doi.org/10.1007/BF02704168

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02704168

Keywords

PACS Nos

Navigation