Skip to main content
Log in

Effect of point defects on the recombination activity of copper precipitates in p-type Czochralski silicon

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effect of point defects on the recombination activity of copper (Cu) precipitates in p-type Czochralski (CZ) silicon has been investigated by means of microwave photoconductivity decay and electron beam induced current (EBIC). It was found that the value of the reciprocal of effective minority carrier lifetime and EBIC contrast of the samples with pre-annealing in Ar, without pre-annealing and with pre-annealing in O2, related to the recombination activity of Cu precipitates, decreased in turn. It was considered that the highest recombination activity of Cu precipitates in the sample with pre-annealing in Ar was mainly attributed to the relative higher minority carrier capture cross section of Cu precipitates, which was affected by the induced vacancies. While the weakest recombination activity of Cu precipitates in the sample with pre-annealing in O2 was ascribed to the relative lower density of Cu precipitates, which was influenced by the induced silicon interstitials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A. Goetzberger, W. Shockley, J. Appl. Phys. 31, 1821 (1960)

    Article  CAS  Google Scholar 

  2. M. Miyazaki, M. Sano, S. Sumita, N. Fujino, Jpn. J. Appl. Phys. 30, L295 (1991)

    Article  CAS  Google Scholar 

  3. K. Honda, A. Ohsawa, N. Toyokura, Appl. Phys. Lett. 45, 270 (1984)

    Article  CAS  Google Scholar 

  4. H. Wendt, H. Cerva, V. Lehmann, W. Pamler, J. Appl. Phys. 65, 2402 (1989)

    Article  CAS  Google Scholar 

  5. A.A. Istratov, E.R. Weber, J. Electrochem. Soc. 149, G21 (2002)

    Article  CAS  Google Scholar 

  6. A.A. Istratov, E.R. Weber, Appl. Phys. A 66, 123 (1998)

    Article  CAS  Google Scholar 

  7. H. Prigge, P. Gerlach, P.O. Hahn, A. Schnegg, H. Jacob, J. Electrochem. Soc. 138, 1385 (1991)

    Article  CAS  Google Scholar 

  8. J.G. Lee, S.R. Morrison, J. Appl. Phys. 64, 6679 (1988)

    Article  CAS  Google Scholar 

  9. A.A. Istratov, H. Hedemann, M. Seibt, O.F. Vyvenko, W. Schröter, T. Heiser, C. Flink, H. Hieslmair, E.R. Weber, J. Electrochem. Soc. 145, 3889 (1998)

    Article  CAS  Google Scholar 

  10. P.S. Plekhanov, T.Y. Tan, Appl. Phys. Phys. 76, 3777 (2000)

    CAS  Google Scholar 

  11. R. Sachdeva, A.A. Istratov, E.R. Weber, Appl. Phys. Lett. 79(18), 2937 (2001)

    Article  CAS  Google Scholar 

  12. W.B. Henley, D.A. Ramappa, L. Jastrezbski, Appl. Phys. Lett. 74(2), 278 (1999)

    Article  CAS  Google Scholar 

  13. M. Seibt, K. Graff, J. Appl. Phys. 63(9), 4444 (1988)

    Article  CAS  Google Scholar 

  14. M. Ronay, R.G. Schad, Phys. Rev. Lett. 64(17), 2042 (1990)

    Article  Google Scholar 

  15. Z. Xi, D. Yang, J. Xu, Y. Ji, D. Que, Appl. Phys. Lett. 83(15), 3048 (2003)

    Article  CAS  Google Scholar 

  16. Z. Xi, J. Chen, D. Yang, A. Lawerenz, H.J. Moeller, J. Appl. Phys. 97, 094909 (2005)

    Article  Google Scholar 

  17. W. Ken, J. Electrochem. Soc. 137(6), 1887 (1990)

    Article  Google Scholar 

  18. E. Yablonovitch, D.L. Allara, C.C. Chang, T. Gmitter, T.B. Bright, Phys. Rev. Lett. 57(2), 249 (1986)

    Article  CAS  Google Scholar 

  19. A.A. Istratov, C. Flink, H. Hieslmair, T. Heiser, E.R. Weber, Appl. Phys. Lett. 71(15), 2121 (1997)

    Article  CAS  Google Scholar 

  20. V.V. Voronkov, R. Falster, Mater. Sci. Semicond. Process. 5, 387 (2003)

    Article  Google Scholar 

  21. R. Falster, V.V. Voronkov, Mater. Sci. Eng. B 73, 87 (2000)

    Article  Google Scholar 

  22. M. Akatsuka, M. Okui, K. Sueoka, Nucl. Instrum. Methods Phys. Res. B 186, 46 (2002)

    Article  CAS  Google Scholar 

  23. W. Shockley, W.T. Read, Phys. Rev. 87(5), 835 (1952)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would thank Dr. Zhenqiang Xi from Zhejiang University of Science and Technology for his helpful discussion. Furthermore, the authors thank the PCSIRT project and 973 project (2007CB6130403) for financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deren Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Yang, D., Yu, X. et al. Effect of point defects on the recombination activity of copper precipitates in p-type Czochralski silicon. J Mater Sci: Mater Electron 19 (Suppl 1), 32–35 (2008). https://doi.org/10.1007/s10854-007-9507-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-007-9507-y

Keywords

Navigation