Skip to main content
Log in

Beneficial Effect of Two-Step Annealing via Low Temperature of Vacancy Complexes in N-type Czochralski Silicon

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We report a simple, time-saving and effective low-temperature approach to avoid the effect of intrinsic defects in n-type Czochralski silicon (Cz-Si) wafers. This approach consists of submitting Cz-Si wafers to two annealing steps. The first annealing step was conducted in the temperature range 100–200°C to dissociate phosphorus–vacancy (P-V) defects. These defects were identified through the calculation of its activation energy (Ea) of annihilation. The second annealing step was conducted in the temperature range 300–400°C to eliminate defects caused by vacancy–oxygen (V-O) pairs. The deactivation effect of the V-O pairs was highlighted using Fourier transform infrared spectroscopy and the effective minority carrier lifetime (τeff). By combining these two annealing steps, we succeeded in enhancing τeff from 180 to 2400 μs and the electrical parameters of the silicon solar cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.E. Cotter, J.H. Guo, P.J. Cousins, M.D. Abbott, F.W. Chen, and K.C. Fisher, IEEE Trans. Electron Devices 53, 1893 (2006).

    Article  Google Scholar 

  2. J. Schmidt and A. Cuevas, J. Appl. Phys. 86, 3175 (1999).

    Article  Google Scholar 

  3. D. Macdonald and L.J. Geerligs, Appl. Phys. Lett. 85, 4061 (2004).

    Article  Google Scholar 

  4. J. Schmidta, R. Krain, and K. Bothe, J. Appl. Phys. 102, 123701 (2007).

    Article  Google Scholar 

  5. D. Macdonald, T. Rothb, and P.N.K. Deenapanray, Appl. Phys. Lett. 89, 142107 (2006).

    Article  Google Scholar 

  6. D. Macdonald, Appl. Phys. A 81, 1619 (2005).

    Article  Google Scholar 

  7. D. Macdonald, H. Mäckel, and A. Cuevas, Appl. Phys. Lett. 88, 092105 (2006).

    Article  Google Scholar 

  8. R. Sachdeva, A.A. Istratov, and E.R. Weber, Appl. Phys. Lett. 79, 2937 (2001).

    Article  Google Scholar 

  9. T. Sinno, E. Dornberger, W.V. Ammon, R.A. Brown, and F. Dupret, Mater. Sci. Eng. B 28, 149 (2000).

    Article  Google Scholar 

  10. B. Lim, K. Bothe, and J. Schmidt, J. Appl. Phys. 107, 123707 (2010).

    Article  Google Scholar 

  11. V.V. Voronkov, R. Falster, B. Lim, and J. Schmidt, J. Appl. Phys. 112, 113717-5 (2012).

    Google Scholar 

  12. G.D. Watkins and J.W. Corbett, Phys. Rev. A 134, 1359 (1964).

    Article  Google Scholar 

  13. A.Y. Liu, C. Sun, V.P. Markevich, A.R. Peaker, J.D. Murphy, and D. Macdonald, J. Appl. Phys. 120, 193103 (2016).

    Article  Google Scholar 

  14. J.D. Murphy, K. Bothe, R. Krain, V.V. Voronkov, and R.J. Falster, J. Appl. Phys. 111, 113709 (2012).

    Article  Google Scholar 

  15. G. Coletti, P. Manshanden, S. Bernardini, P.C.P. Bronsveld, A. Gutjahr, Z. Hu, and G. Li, Sol. Energy Mater. Sol. Cells 130, 647 (2014).

    Article  Google Scholar 

  16. C.A. Londos, N.V. Sarlis, L.G. Fytros, and K. Papastergiou, Phys. Rev. B 53, 6900 (1996).

    Article  Google Scholar 

  17. A. Chroneos, C.A. Londos, and E.N. Sgourou, J. Appl. Phys. 110, 093507 (2011).

    Article  Google Scholar 

  18. V.V. Voronkov and R. Falster, J. Appl. Phys. 91, 1 (2002).

    Article  Google Scholar 

  19. V.V. Voronkov, R. Falster, and C.A. Londos, J. Appl. Phys. 111, 113530 (2012).

    Article  Google Scholar 

  20. M.G. Ganchenkova, V.A. Borodin, and R.M. Nieminen, Nucl. Instrum. Meth. B 228, 218 (2005).

    Article  Google Scholar 

  21. B.D. Kiriya, N. Grant, A. Azcatl, M. Hettick, T. Kho, P. Phang, H.C. Sio, D. Yan, D. Macdonald, M.A. Quevedo-Lopez, R.M. Wallace, A. Cuevas, and A. Javey, ACS Appl. Mater. Interfaces 8, 24205 (2016).

    Article  Google Scholar 

  22. S. Cuevas, Appl. Phys. Lett. 69, 2510 (1996).

    Article  Google Scholar 

  23. B. Moumni, A. Ben Jaballah, S. Aouida, and B. Bessaïs, World J. Condens. Matter Phys. 2, 165 (2012).

    Article  Google Scholar 

  24. G.D. Watkins, Mater. Sci. Semicond. Process. 3, 227 (2000).

    Article  Google Scholar 

  25. J.W. Corbett, G.D. Watkins, R.M. Chrenko, and R.S. McDonald, Phys. Rev. 121, 1015 (1961).

    Article  Google Scholar 

  26. J.W. Corbett, G.D. Watkins, and R.S. McDonald, Phys. Rev. A 135, 1381 (1964).

    Article  Google Scholar 

  27. Y. Shuai, L. Yangxian, M. Qiaoyun, L. Lili, and X. Xuewen, J. Cryst. Growth 280, 60 (2005).

    Article  Google Scholar 

  28. J.L. Lindstrom, L.I. Murin, B.G. Svensson, V.P. Markevich, and T. Hallberg, Phys. B 340, 509 (2003).

    Article  Google Scholar 

  29. J.L. Lindstrom and B.G. Svensson, Mater. Res. Soc. Symp. Proc. 59, 45 (1986).

    Article  Google Scholar 

  30. J.L. Lindstrom, G. Oehrlejn, and J.W. Corbett, Phys. Stat. Sol. (a) 95, 179 (1986).

    Article  Google Scholar 

  31. J.L. Lindström, T. Hallberg, J. Hermansson, L. Murin, B. Komarov, V. Markevich, M. Kleverman, and B.G. Svensson, Phys. B 284, 308 (2001).

    Google Scholar 

  32. D. Aberg, B. Svensson, T. Hallberg, and J. Lindström, Phys. Rev. B 58, 12944 (1998).

    Article  Google Scholar 

  33. V.V. Voronkov and R. Falster, J. Appl. Phys. 107, 53509 (2010).

    Article  Google Scholar 

  34. D. Chung, B. Mitchell, M. Goodarzi, C. Sun, D. Macdonald, and T. Trupke, IEEE J. Photovolt. 4, 88 (2014).

    Article  Google Scholar 

  35. S. Dannefaer, G. Suppes, and V. Avalos, J. Phys. Condens. Matter 21, 015802 (2009).

    Article  Google Scholar 

  36. E. Nicholas, P. Grant, V. Markevich, J. Mullins, R.P. Anthony, D. Macdonald, J.D. Murphy, and F. Rougieux, Phys. Status Solid A 8, 1 (2016).

    Google Scholar 

  37. J. Schmidt, K. Bothe, and R. Hezel, in Proceedings of the 29th IEEE Photovoltaic Specialists Conference, vol. 178 (New Orleans, LA _IEEE, New York, 2002).

  38. T. Schutz-Kuchly, J. Veirman, S. Dubois, and D.R. Heslinga, Appl. Phys. Lett. 96, 0935050 (2010).

    Article  Google Scholar 

  39. S. De Wolf and M. Kondo, Appl. Phys. Lett. 90, 042111 (2007).

    Article  Google Scholar 

  40. J. Mitchell, D. Macdonald, and A. Cuevas, Appl. Phys. Lett. 94, 162102 (2009).

    Article  Google Scholar 

  41. A. Richter, J. Benick, M. Hermle, and S.W. Glunz, Appl. Phys. Lett. 104, 061606 (2014).

    Article  Google Scholar 

  42. P. Zheng, F.E. Rougieux, N.E. Grant, and D. Macdonald, Photovoltaics 5, 183 (2015).

    Article  Google Scholar 

  43. M. Hirata, M. Hirata, and H. Saito, J. Phys. Soc. Jpn. 27, 405 (1969).

    Article  Google Scholar 

  44. L.C. Kimerling, H.M. DeAngelis, and J.W. Diebold, Solid State Commun. 16, 171 (1975).

    Article  Google Scholar 

  45. E. Letty, J. Veirmana, W. Favrea, and M. Lemitic, Sol. Energy Mater. Sol. Cells 166, 147 (2017).

    Article  Google Scholar 

  46. V. Kozlovski and V. Abrosimova, Radiation Defect Engineering (World Scientific Publishing Company, Selected topics in electronics and systems, Singapore, 2005), p. 37.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Zarroug.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hannachi, M., Amri, C., Hedfi, H. et al. Beneficial Effect of Two-Step Annealing via Low Temperature of Vacancy Complexes in N-type Czochralski Silicon. J. Electron. Mater. 48, 509–516 (2019). https://doi.org/10.1007/s11664-018-6732-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6732-5

Keywords

Navigation