Skip to main content
Log in

Synthesis and photoluminescence of ZnO nanowires/nanorods

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report growth of ZnO nanowires on various substrates using a vapour phase transport method and show that the growth mechanism is vapour-liquid-solid growth. We present photoluminescence data for samples grown on a-plane sapphire at room and low temperatures indicating that the optical quality of these structures is potentially excellent, with intense emission and narrow bound exciton linewidths. The intensity decays rapidly with increasing temperature, indicating a strong temperature-activated non-radiative mechanism whose origin is unclear. We observe a high energy excitonic emission close to the band edge which we assign to the “surface” exciton in ZnO at ∼3.368 eV. This assignment is consistent with the large surface to volume ratio of the nanowire systems under consideration and also indicates that this large ratio has a significant effect on the luminescence even at low temperatures. These surface effects may also be responsible for the rapid decay of the luminescence with increasing temperature via a temperature-activated surface recombination. The nanowire systems appear to offer the prospect of extremely efficient excitonic emission for device applications, and we note that one of the important aspects of achieving this potential will be control of the surface effects via passivation or other means.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. C. Look, Mat. Sci. Eng. B80 (2001) 383.

    Google Scholar 

  2. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, Science 292 (2001) 1987.

    Article  PubMed  Google Scholar 

  3. Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang and D. P. Yu, Appl. Phys. Lett. 83 (2003) 1689.

    Article  Google Scholar 

  4. M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber and P. Yang, Adv. Mater. 13 (2001) 113.

    Article  Google Scholar 

  5. X. Y. Kong and Z. L. Wang, Appl. Phys. Lett. 84 (2004) 975.

    Article  Google Scholar 

  6. W. L. Hughes and Z. L. Wang, J. Am. Chem. Soc. 126 (2004) 6703.

    Article  PubMed  Google Scholar 

  7. Z. L. Wang, X. Y. Kong and J. M. Zuo, Phys. Rev. Lett. 91 (2003) article 185502.

  8. M. S. Gudikson and C. M. Lieber, J. Am. Chem. Soc. 122 (2000) 8801.

    Article  Google Scholar 

  9. M. Lorenz, J. Lenzner, E. M. Kaidashev, H. Hochmuth and M. Grundmann, Ann. Phys. (Leipzig) 13 (2004) 39.

    Article  Google Scholar 

  10. B. D. Yao, Y. F. Chan and N. Wang, Appl. Phys. Lett. 81 (2002) 757.

    Article  Google Scholar 

  11. E. Mcglynn, J. Fryar, G. Tobin, C. Roy, M. O. Henry, J.-P. Mosnier, E. Deposada and J. G. Lunney, Thin Solid Films 458 (2004) 330.

    Article  Google Scholar 

  12. R. Dingle, Phys. Rev. Lett. 23 (1969) 579.

    Article  Google Scholar 

  13. B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Strassburg, M. Dworzak, U. Haboeck and A. V. Rodina, Phys. Stat. Solidi (b) 241 (2004) 231.

    Article  Google Scholar 

  14. V. V. Travnikov, A. Freiberg and S. F. Savikhin, J. Lumin. 47 (1990) 107.

    Article  Google Scholar 

  15. S. F. Savikhin and A. Freiberg, J. Lumin. 55 (1993) 1.

    Article  Google Scholar 

  16. J. Grabowska, A. Meaney, K. K. Nanda, J.-P. Mosnier, M. O. Henry, J. R. Duclère and E. Mcglynn, Phys. Ref. B 71 (2005) article #115439.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. McGlynn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grabowska, J., Nanda, K.K., McGlynn, E. et al. Synthesis and photoluminescence of ZnO nanowires/nanorods. J Mater Sci: Mater Electron 16, 397–401 (2005). https://doi.org/10.1007/s10854-005-2304-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-005-2304-6

Keywords

Navigation