Skip to main content
Log in

Nonequilibrium statistical thermodynamics of thermally activated dislocation ensembles: part 2—ensemble evolution toward correlation of enthalpy barriers

  • The Physics of Metal Plasticity: in honor of Professor Hussein Zbib
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In part 1, we formally defined important physical concepts in statistical thermodynamics that undergird internal state variable (ISV) theory such as configurational subsystems (e.g., individual grains or phases), constrained local equilibrium, and thermally activated dislocation reactions in the context of crystal plasticity. The primal importance of the Gibbs free energy barrier to dislocation reactions within each subsystem was emphasized since the enthalpy barriers are affected by local constraint and resulting long-range and short-range athermal internal stresses acting within subsystems. In this work, we formally apply Gibbsian thermodynamics up to the saddle point of pending dislocation barrier reactions. The partition function based on reaction probability serves as the statistical mechanics basis for the change of Gibbs free energy that drives pending ensemble reactions; it is employed to define both the changes of the thermal entropy and configurational entropy of pending reactions; the latter enumerates reactions not only within subsystems, but also over permutations of subsystems, consistent with a multiscale hierarchy. Intrinsic entropy produced via post-reaction dynamic rearrangement and glide is of purely thermally dissipative character, being coupled to the thermal bath via dispersive phonon dynamics, and is distinguished from the entropy change of pending reactions. Building on the important concept of degree of correlation of thermally activated dislocation processes both within each subsystem and across the ensemble of subsystems introduced in part 1, we argue that nonequilibrium trajectories progressively trend toward increased correlation of enthalpy barriers across subsystems of the ensemble by virtue of internal stress redistribution among hard (unfavorable for extended dislocation reactions) and soft (more favorable) subsystems. The degree of correlation is a many-body concept involving populations of dislocations within and among various configurational subsystems. The present statistical thermodynamics framework invokes the constrained local equilibrium approach that fully respects heterogeneity of subsystems and distributions of barrier strengths, in common with ISV theory. However, literature forms of ISV theories are almost universally of reduced-order character to reduce complexity. Accordingly, reduced-order representations of ISV theory are presented for fully correlated conditions, as in standard representations of the hardening laws and flow kinetics of crystal plasticity, along with potential variations relevant to decorrelated behavior, including transients induced by unloading or changes in direction of the external applied stress. The origin of ensemble kinematic hardening with multiple back stress components due to interactions of hard and soft subsystems emerges naturally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Reprinted from with permission [86].

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Jaynes ET (1957) Information theory and statistical mechanics. Phys Rev 106:620–630. https://doi.org/10.1103/PhysRev.106.620

    Article  Google Scholar 

  2. Jaynes ET (1957) Information theory and statistical mechanics. II. Phys Rev 108:171–190. https://doi.org/10.1103/PhysRev.108.171

    Article  Google Scholar 

  3. Jaynes ET (1980) The minimum entropy production principle. Ann Rev Phys Chem 31:579–601. https://doi.org/10.1146/annurev.pc.31.100180.003051

    Article  CAS  Google Scholar 

  4. Sutton C, Levchenko SV (2020) First-principles atomistic thermodynamics and configurational entropy. Front Chem 8:757. https://doi.org/10.3389/fchem.2020.00757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu ZK, Li B, Lin H (2019) Multiscale entropy and its implications to critical phenomena, emergent behaviors, and information. J Phase Equilib Diffus 40(4):508–521. https://doi.org/10.1007/s11669-019-00736-w

    Article  CAS  Google Scholar 

  6. Liu ZK, Wang Y, Shang SL (2022) Zentropy theory for positive and negative thermal expansion. J Phase Equilib Diffus 43:598–605. https://doi.org/10.1007/s11669-022-00942-z

    Article  CAS  Google Scholar 

  7. Nadai A (1963) Theory of flow and fracture of solids, vol 2. McGraw-Hill, New York, pp 96–105

    Google Scholar 

  8. Chung K, Richmond O (1993) A deformation theory of plasticity based on minimum work paths. Int J Plast 9(8):907–920. https://doi.org/10.1016/0749-6419(93)90057-W

    Article  Google Scholar 

  9. Dewar RC (2009) Maximum entropy production as an inference algorithm that translates physical assumptions into macroscopic predictions: don’t shoot the messenger. Entropy 11:931–944. https://doi.org/10.3390/e11040931

    Article  CAS  Google Scholar 

  10. Chakrabarti CG, Ghosh K (2010) Maximum-entropy principle: ecological organization and evolution. J Biol Phys 36:175–183. https://doi.org/10.1007/s10867-009-9170-z

    Article  CAS  PubMed  Google Scholar 

  11. Yukalov VI, Sornette D (2014) Self-organization in complex systems as decision making. Adv Complex Syst 17:1450016. https://doi.org/10.1142/S0219525914500167

    Article  Google Scholar 

  12. Leyson GPM, Curtin WA (2013) Friedel vs. Labusch: the strong/weak pinning transition in solute strengthened metals. Philos Mag 93(19):2428–2444. https://doi.org/10.1080/14786435.2013.776718

    Article  CAS  Google Scholar 

  13. Zirkle T, Zhu T, McDowell DL (2023) Multiscale modeling of hydrogen-affected crack tip damage using a fully coupled chemomechanical crystal plasticity framework for austenitic stainless steel. Int J Multiscale Comput Eng 21(2):21–65. https://doi.org/10.1615/IntJMultCompEng.2022042488

    Article  Google Scholar 

  14. Mareschal M (1984) Long range correlations in a non equilibrium system. In: Vidal C, Pacault A (eds) Non-equilibrium dynamics in chemical systems. Springer series in synergetics, vol 27. Springer, Berlin. https://doi.org/10.1007/978-3-642-70196-2_31

    Chapter  Google Scholar 

  15. Sudmans M, Stricker M, Weygand D, Hochrainer T, Schulz K (2019) Dislocation multiplication by cross-slip and glissile reaction in a dislocation based continuum formulation of crystal plasticity. J Mech Phys Solids 132:103695. https://doi.org/10.1016/j.jmps.2019.103695

    Article  Google Scholar 

  16. Stricker M, Weygand D (2015) Dislocation multiplication mechanisms—glissile junctions and their role on the plastic deformation at the microscale. Acta Mater 99:130–139. https://doi.org/10.1016/j.actamat.2015.07.073

    Article  CAS  Google Scholar 

  17. Cottrell A (2009) Strain hardening at different temperatures. Philos Mag Lett 89(1):19–22. https://doi.org/10.1080/09500830802448569

    Article  CAS  Google Scholar 

  18. Prigogine I (1947) Etude Thermodynamique des Phénoménes Irréversibles. Desoer, Liége

  19. Patra A, McDowell DL (2012) Crystal plasticity-based constitutive modeling of irradiated bcc structures. Philos Mag 92(7):861–887. https://doi.org/10.1080/14786435.2011.634855

    Article  CAS  Google Scholar 

  20. Castelluccio GM, McDowell DL (2017) Mesoscale cyclic crystal plasticity with dislocation substructures. Int J Plast 98:1–26. https://doi.org/10.1016/j.ijplas.2017.06.002

    Article  Google Scholar 

  21. Ma A, Roters F, Raabe D (2006) A dislocation density based constitutive model for crystal plasticity FEM including geometrically necessary dislocations. Acta Mater 54:2169–2179. https://doi.org/10.1016/j.actamat.2006.01.005

    Article  CAS  Google Scholar 

  22. Wang AJ, Kumar RS, Shenoy MM, McDowell DL (2006) Microstructure-based multiscale constitutive modeling of γ–γʹ nickel-base superalloys. Int J Multiscale Comput Eng 4(5–6):663–692. https://doi.org/10.1615/IntJMultCompEng.v4.i5-6.70

    Article  CAS  Google Scholar 

  23. Roters F, Diehl M, Shanthraj P, Eisenlohr P, Reuber C, Wong SL, Maiti T, Ebrahimi A, Hochrainer T, Fabritius HO, Nikolov S, Friák M, Fujita N, Grilli N, Janssens KGF, Jia N, Kok PJJ, Ma D, Meier F, Werner E, Stricker M, Weygand E, Raabe D (2019) DAMASK—The Düsseldorf Advanced Material Simulation Kit for modeling multi-physics crystal plasticity, thermal, and damage phenomena from the single crystal up to the component scale. Comput Mater Sci 158(15):420–478. https://doi.org/10.1016/j.commatsci.2018.04.030

    Article  CAS  Google Scholar 

  24. Evers LP, Brekelmans WAM, Geers MGD (2004) Scale dependent crystal plasticity framework with dislocation density and grain boundary effects. Int J Solids Struct 41(18–19):5209–5230. https://doi.org/10.1016/j.ijsolstr.2004.04.021

    Article  Google Scholar 

  25. Dunne FPE, Kiwanuka R, Wilkinson AJ (2012) Crystal plasticity analysis of micro-deformation, lattice rotation and geometrically necessary dislocation density. Proc R Soc A 468:2509–2531. https://doi.org/10.1098/rspa.2012.0050

    Article  Google Scholar 

  26. Patra A, Chaudhary S, Pai N, Ramgopal T, Khandelwal S, Rao A, McDowell DL (2023) ρ-CP: open source dislocation density based crystal plasticity framework for simulating thermomechanical deformation. Comput Mater Sci 224:112182. https://doi.org/10.1016/j.commatsci.2023.112182

    Article  CAS  Google Scholar 

  27. Rice JR (1971) Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity. J Mech Phys Solids 9:433–455. https://doi.org/10.1016/0022-5096(71)90010-X

    Article  Google Scholar 

  28. Patra A, Zhu T, McDowell DL (2014) Constitutive equations for modeling non-Schmid effects in single crystal bcc-Fe at low and ambient temperatures. Int J Plast 59:1–14. https://doi.org/10.1016/j.ijplas.2014.03.016

    Article  CAS  Google Scholar 

  29. Kalidindi SR, Bronkhorst CA, Anand L (1992) Crystallographic texture evolution in bulk deformation processing of fcc metals. J Mech Phys Solids 40(3):537–569. https://doi.org/10.1016/0022-5096(92)80003-9

    Article  CAS  Google Scholar 

  30. Cuitiño AM, Ortiz M (1993) Computational modelling of single crystals. Modell Simul Mater Sci Eng 1(3):225–263. https://doi.org/10.1088/0965-0393/1/3/001

    Article  Google Scholar 

  31. Busso EP, Cailletaud G (2005) On the selection of active slip systems in crystal plasticity. Int J Plast 21(11):2212–2231. https://doi.org/10.1016/j.ijplas.2005.03.019

    Article  CAS  Google Scholar 

  32. Kocks UF, Argon AS, Ashby MF (1975) Thermodynamics and kinetics of slip. In: Chalmers B, Christian JW, Massalski TB (eds) Progress in materials science, vol 19. Pergamon Press, Oxford

    Google Scholar 

  33. Narayanan S, McDowell DL, Zhu T (2014) Crystal plasticity model for bcc iron atomistically informed by kinetics of correlated kinkpair nucleation on screw dislocation. J Mech Phys Solids 65:54–68. https://doi.org/10.1016/j.jmps.2014.01.004

    Article  CAS  Google Scholar 

  34. Chen D, Costello LL, Geller CB, Zhu T, McDowell DL (2019) Atomistic modeling of dislocation cross-slip in nickel using free-end nudged elastic band method. Acta Mater 168:426–447. https://doi.org/10.1016/j.actamat.2019.02.035

    Article  CAS  Google Scholar 

  35. Zirkle T, Costello L, McDowell DL (2021) Crystal plasticity modeling of hydrogen and hydrogen-related defects in initial yield and plastic flow of single crystal stainless steel 316L. Metall Mater Trans A 52:1–17. https://doi.org/10.1007/s11661-021-06357-8

    Article  CAS  Google Scholar 

  36. Peirce D, Asaro RJ, Needleman A (1983) Material rate dependence and localized deformation in crystalline solids. Acta Metall 31(12):1951–1976. https://doi.org/10.1016/0001-6160(83)90014-7

    Article  CAS  Google Scholar 

  37. Chen W, Viosin T, Zhang Y, Florien JB, Spadaccini CM, McDowell DL, Zhu T, Way YM (2019) Microscale residual stresses in additively manufactured stainless steel. Nat Commun 10:4338. https://doi.org/10.1038/s41467-019-12265-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hennessey C, Castelluccio GM, McDowell DL (2017) Sensitivity of polycrystal plasticity to slip system kinematic hardening laws for Al 7075–T6. Mater Sci Eng A 687:241–248. https://doi.org/10.1016/j.msea.2017.01.070

    Article  CAS  Google Scholar 

  39. Sobie C, Capolungo L, McDowell DL, Martinez E (2017) Modal analysis of dislocation vibration and reaction attempt frequency. Acta Mater 134:203–210. https://doi.org/10.1016/j.actamat.2017.02.005

    Article  CAS  Google Scholar 

  40. Sobie C, McDowell DL, Martinez E, Capolungo L (2017) Thermal activation of dislocations in large scale obstacle bypass. J Mech Phys Solids 105:150–160. https://doi.org/10.1016/j.jmps.2017.05.003

    Article  Google Scholar 

  41. Arsenault RJ, Patu S, Esterling DM (1989) Computer simulation of solid solution strengthening in fcc alloys: part I. Friedel and Mott limits. Metall Trans A 20:1411–1418. https://doi.org/10.1007/BF02665498

    Article  Google Scholar 

  42. Nabarro FRN (1977) The theory of solution hardening. Philos Mag J Theor Exp Appl Phys 8(35):613–622. https://doi.org/10.1080/14786437708235994

    Article  Google Scholar 

  43. Nabarro FRN (1985) Thermally activated dislocation glide in moderately concentrated solid solutions. Philos Mag B 52(3):785–793. https://doi.org/10.1080/13642818508240636

    Article  CAS  Google Scholar 

  44. Hashiguchi K (1989) Subloading surface model in unconventional plasticity. Int J Solids Struct 25(8):917–945. https://doi.org/10.1016/0020-7683(89)90038-3

    Article  Google Scholar 

  45. Clayton JD, McDowell DL, Bammann DJ (2004) A multiscale gradient theory for single crystalline elastoviscoplasticity. Int J Eng Sci 42:427–457. https://doi.org/10.1016/j.ijengsci.2003.08.001

    Article  Google Scholar 

  46. Le KC (2018) Thermodynamic dislocation theory for non-uniform plastic deformations. J Mech Phys Solids 111:157–169. https://doi.org/10.1016/j.jmps.2017.10.022

    Article  Google Scholar 

  47. Roters F, Eisenlohr P, Hantcherli L, Tjahjanto DD, Bieler TR, Raabe D (2010) Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater 58(4):1152–1211. https://doi.org/10.1016/j.actamat.2009.10.058

    Article  CAS  Google Scholar 

  48. Patra A, McDowell DL (2016) Crystal plasticity investigation of the microstructural factors influencing dislocation channeling in a model irradiated bcc material. Acta Mater 100:364–376. https://doi.org/10.1016/j.actamat.2016.03.041

    Article  CAS  Google Scholar 

  49. Castelluccio GM, Geller CB, McDowell DL (2018) A rationale for modeling hydrogen effects on plastic deformation across scales in fcc metals. Int J Plast 111:72–84. https://doi.org/10.1016/j.ijplas.2018.07.009

    Article  CAS  Google Scholar 

  50. Arsenlis A, Parks DM (2002) Modeling the evolution of crystallographic dislocation density in crystal plasticity. J Mech Phys Solids 50(9):1979–2009. https://doi.org/10.1016/S0022-5096(01)00134-X

    Article  CAS  Google Scholar 

  51. Essman U, Mughrabi H (1979) Annihilation of dislocations during tensile and cyclic deformation and limits of dislocation densities. Philos Mag 40:731–756. https://doi.org/10.1080/01418617908234871

    Article  Google Scholar 

  52. Kocks UF, Mecking H (2003) Physics and phenomenology of strain hardening: the FCC case. Prog Mater Sci 48(3):171–273. https://doi.org/10.1016/S0079-6425(02)00003-8

    Article  CAS  Google Scholar 

  53. Kubin L, Canova G, Condat M, Devincre B, Pontikis V, Bréchet Y (1992) Dislocation microstructures and plastic flow: a 3D simulation. Solid State Phenom 23:455–472. https://doi.org/10.4028/www.scientific.net/SSP.23-24.455

    Article  Google Scholar 

  54. Zirkle T (2022) Multiscale modeling of hydrogen embrittlement. Dissertation. https://repository.gatech.edu/bitstreams/02060cf5-29ce-44fd-a7a5-2fa7e01f6aaa/download Accessed 12 Jul 2023

  55. Wang Y, Cai W (2023) Stress-dependent activation entropy in thermally activated cross-slip of dislocations. PNAS 120(34):e2222039120. https://doi.org/10.1073/pnas.2222039120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sills RB, Kuykendall WP, Aghaei A, Cai W (2016) Fundamentals of dislocation dynamics simulations. In: Weinberger CR, Tucker GJ (eds) Multiscale materials modeling for nanomechanics. Springer, Cham (ISBN 978-3-319-33478-3)

    Google Scholar 

  57. Racherla V, Bassani JL (2007) Strain burst phenomena in the necking of a sheet that deforms by non-associated plastic flow. Modell Simul Mater Sci Eng 15:S297–S311. https://doi.org/10.1088/0965-0393/15/1/S23

    Article  Google Scholar 

  58. Mayeur J, McDowell DL (2007) A three-dimensional crystal plasticity model for duplex Ti–6Al–4V. Int J Plast 23(9):1457–1485. https://doi.org/10.1016/j.ijplas.2006.11.006

    Article  CAS  Google Scholar 

  59. Zhang M, Zhang J, McDowell DL (2007) Microstructure-based crystal plasticity modeling of cyclic deformation of Ti–6Al–4V. Int J Plast 23(8):1328–1348. https://doi.org/10.1016/j.ijplas.2006.11.009

    Article  CAS  Google Scholar 

  60. Lakshmanan A, Yaghoobi M, Stopka KS, Sundararaghavan V (2022) Crystal plasticity finite element modeling of grain size and morphology effects on yield strength and extreme value fatigue response. J Mater Res Technol 19:3337–3354. https://doi.org/10.1016/j.jmrt.2022.06.075

    Article  CAS  Google Scholar 

  61. Picu RC, Li R, Xu Z (2009) Strain rate sensitivity of thermally activated dislocation motion across fields of obstacles of different kind. Mater Sci Eng A 502:164–171. https://doi.org/10.1016/j.msea.2008.10.046

    Article  CAS  Google Scholar 

  62. Dong Y, Nogaret T, Curtin W (2010) Scaling of dislocation strengthening by multiple obstacle types. Metall Mater Trans A 41:1954–1960. https://doi.org/10.1007/s11661-010-0229-z

    Article  CAS  Google Scholar 

  63. Krempl E (1987) Models of viscoplasticity some comments on equilibrium (back) stress and drag stress. Acta Mech 69:25–42. https://doi.org/10.1007/BF01175712

    Article  Google Scholar 

  64. Follansbee PS, Kocks UF (1988) A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an ISV. Acta Metall 36(1):81–93. https://doi.org/10.1016/0001-6160(88)90030-2

    Article  Google Scholar 

  65. Follansbee PS (2014) On the definition of state variables for an ISV constitutive model describing metal deformation. Mater Sci Appl 5:603–609. https://doi.org/10.4236/msa.2014.58062

    Article  Google Scholar 

  66. Mróz Z (1967) On the description of anisotropic workhardening. J Mech Phys Solids 15(3):163–175. https://doi.org/10.1016/0022-5096(67)90030-0

    Article  Google Scholar 

  67. Lamba HS (1976) Nonproportional cyclic plasticity. TAM report no. 413, Dept. Theoretical and Applied Mechanics, University of Illinois at Urbana-Champaign. https://www.ideals.illinois.edu/items/120028. Accessed 12 Jul 2023

  68. McDowell DL (1985) A two surface model for transient nonproportional cyclic plasticity: part 2—comparison of theory with experiments. ASME J Appl Mech 52:303–308. https://doi.org/10.1115/1.3169045

    Article  Google Scholar 

  69. McDowell DL (1985) An experimental study of the structure of constitutive equations for nonproportional cyclic plasticity. ASME J Eng Mater Technol 107:307–315. https://doi.org/10.1115/1.3225824

    Article  Google Scholar 

  70. Armstrong P, Frederick C (1966) A mathematical representation of the multiaxial Baushinger effect. In G.E.C.B. report RD/B/N 731

  71. Chaboche JL (1977) Viscoplastic constitutive equations for the description of cyclic and anisotropic behaviour of metals. Bull, de I'Acad. Polonaise des Sciences, Serie Sc. et Techn., 17th Polish conference on mechanics of solids, Szczyrk, vol 25, pp 33–41

  72. Chaboche JL, Roussellier G (1983) On the plastic and viscoplastic constitutive equations- part I: rules developed with internal variable concept. ASME J Press Vessel Technol 105:153–158. https://doi.org/10.1115/1.3264257

    Article  Google Scholar 

  73. Chaboche JL, Roussellier G (1983) On the plastic and viscoplastic constitutive equations- part II: application of the internal variables concepts to the 316 stainless steel. ASME J Press Vessel Technol 105:159–164. https://doi.org/10.1115/1.3264258

    Article  Google Scholar 

  74. Chaboche JL (1983) On the constitutive equations of materials under monotonic or cyclic loadings. La Recherche Aerospatiale 5:31–43

    Google Scholar 

  75. Lemaitre J, Chaboche JL (1990) Mechanics of solid materials. Cambridge University Press, Cambridge

    Book  Google Scholar 

  76. Burlet H, Cailletaud G (1987) Modeling of cyclic plasticity in finite element codes. In: 2nd International conference on constitutive laws for engineering materials: theory and applications. Elsevier, Tucson, pp 1157–1164

  77. Moosbrugger JC, McDowell DL (1990) A rate-dependent bounding surface model with a generalized image point for cyclic nonproportional viscoplasticity. J Mech Phys Solids 38(5):627–656. https://doi.org/10.1016/0022-5096(90)90026-Z

    Article  Google Scholar 

  78. Moosbrugger JC, McDowell DL (1989) On a class of kinematic hardening rules for monproportional cyclic plasticity. ASME J Eng Mater Technol 111(1):87–98. https://doi.org/10.1115/1.3226439

    Article  Google Scholar 

  79. McDowell DL (2010) A perspective on trends in multiscale plasticity. Int J Plast 26(9):1280–1309. https://doi.org/10.1016/j.ijplas.2010.02.008

    Article  CAS  Google Scholar 

  80. Meric L, Poubanne P, Cailletaud G (1991) Single crystal modeling for structural calculations: part 1—model presentation. ASME J Eng Mater Technol 113(1):162–170. https://doi.org/10.1115/1.2903374

    Article  CAS  Google Scholar 

  81. Keshavarz S, Ghosh S, Reid ACE, Langer SA (2016) A non-Schmid crystal plasticity finite element approach to multi-scale modeling of nickel-based superalloys. Acta Mater 114:106–115. https://doi.org/10.1016/j.actamat.2016.05.016

    Article  CAS  Google Scholar 

  82. Ghosh S, Weber G, Keshavarz S (2016) Multiscale modeling of polycrystalline nickel-based superalloys accounting for subgrain microstructures. Mech Res Commun 78(2):34–46. https://doi.org/10.1016/j.mechrescom.2015.12.001

    Article  Google Scholar 

  83. Mughrabi H (1983) Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals. Acta Metall 31(9):1367–1379. https://doi.org/10.1016/0001-6160(83)90007-X

    Article  CAS  Google Scholar 

  84. Feaugas X (1999) On the origin of the tensile flow stress in the stainless steel AISI 316L at 300 K: back stress and effective stress. Acta Mater 47(13):3617–3632. https://doi.org/10.1016/S1359-6454(99)00222-0

    Article  CAS  Google Scholar 

  85. El-Awady J (2015) Unravelling the physics of size-dependent dislocation-mediated plasticity. Nat Commun 6:5926. https://doi.org/10.1038/ncomms6926

    Article  PubMed  Google Scholar 

  86. Zirkle T, Zhu T, McDowell DL (2021) Micromechanical crystal plasticity back stress evolution within fcc dislocation substructure. Int J Plast 146:103082. https://doi.org/10.1016/j.ijplas.2021.103082

    Article  CAS  Google Scholar 

  87. Kang G, Liu Y, Dong Y, Gao Q (2011) Uniaxial ratcheting behaviors of metals with different crystal structures or values of fault energy: macroscopic experiments. J Mater Sci Technol 27(5):453–459. https://doi.org/10.1016/S1005-0302(11)60090-X

    Article  CAS  Google Scholar 

  88. McDowell DL, Ghosh S, Kalidindi SR (2011) Representation and computational structure-property relations of random media. JOM 63(3):45–51. https://doi.org/10.1007/s11837-011-0045-y

    Article  Google Scholar 

  89. Ohno N, Wang JD (1993) Kinematic hardening rules with critical state of dynamic recovery, part I: formulation and basic features for ratchetting behavior. Int J Plast 9(3):375–390. https://doi.org/10.1016/0749-6419(93)90042-O

    Article  CAS  Google Scholar 

  90. Jiang Y, Sehitoglu H (1996) Modeling of cyclic ratchetting plasticity, part I: development of constitutive relations. ASME J Appl Mech 63(3):720–725. https://doi.org/10.1115/1.2823355

    Article  CAS  Google Scholar 

  91. Kubin LP (1993) Dislocation patterning. In: Cahn RW, Haasen P, Kramer EJ (eds) Materials science and technology. Wiley, Hoboken, pp 137–190

    Google Scholar 

  92. Molinari A, Ravichandran G (2005) Constitutive modeling of high-strain-rate deformation in metals based on the evolution of an effective microstructural length. Mech Mater 37(7):737–752. https://doi.org/10.1016/j.mechmat.2004.07.005

    Article  Google Scholar 

  93. Kuhlmann-Wilsdorf D (1989) Theory of plastic deformation: properties of low energy dislocation structures. Mater Sci Eng A 113:1–41. https://doi.org/10.1016/0921-5093(89)90290-6

    Article  Google Scholar 

  94. Hughes DA, Hansen N (1997) High angle boundaries formed by grain subdivision mechanisms. Acta Mater 45(9):3871–3886. https://doi.org/10.1016/S1359-6454(97)00027-X

    Article  CAS  Google Scholar 

  95. Hughes DA, Liu Q, Chrzan DC, Hansen N (1997) Scaling of microstructural parameters: misorientations of deformation induced boundaries. Acta Mater 45(1):105–112. https://doi.org/10.1016/S1359-6454(96)00153-X

    Article  CAS  Google Scholar 

  96. Butler GC, McDowell DL (1998) Polycrystal constraint and grain subdivision. Int J Plast 14(8):703–717. https://doi.org/10.1016/S0749-6419(98)00018-7

    Article  CAS  Google Scholar 

  97. Ortiz M, Repetto EA (1999) Nonconvex energy minimization and dislocation structures in ductile single crystals. J Mech Phys Solids 47:397–462. https://doi.org/10.1016/S0022-5096(97)00096-3

    Article  CAS  Google Scholar 

  98. Ortiz M, Repetto EA, Stainier L (2000) A theory of subgrain dislocation structures. J Mech Phys Solids 48:2077–2114. https://doi.org/10.1016/S0022-5096(99)00104-0

    Article  Google Scholar 

  99. Carstensen C, Hackl K, Mielke A (2002) Non-convex potentials and microstructures in finite-strain plasticity. Proc R Soc Lond A 458:299–317. https://doi.org/10.1098/rspa.2001.086

    Article  Google Scholar 

  100. Conti S, Ortiz M (2005) Dislocation microstructures and the effective behavior of single crystals. Arch Ration Mech Anal 176:103–147. https://doi.org/10.1007/s00205-004-0353-2

    Article  Google Scholar 

  101. Hackl K, Hoppe U, Kochmann DM (2012) Generation and evolution of inelastic microstructures an overview. GAMM-Mitt 35(1):91–106. https://doi.org/10.1002/gamm.201210007

    Article  Google Scholar 

  102. Song H, Gunkelmann N, Po G, Sandfeld S (2021) Data-mining of dislocation microstructures: concepts for coarse-graining of internal energies. Modell Simul Mater Sci Eng 29:035005. https://doi.org/10.1088/1361-651X/abdc6b

    Article  Google Scholar 

Download references

Acknowledgements

This effort is conducted in tribute to the legacy of collaborations and contributions made by Hussein Zbib in modeling and understanding multiscale aspects of dislocation plasticity using methods and tools ranging from DDD to crystal plasticity to generalized continua descriptions. Support of the Carter N. Paden, Jr. Distinguished Chair in Metals Processing is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

This work is the sole intellectual product of the author.

Corresponding author

Correspondence to David L. McDowell.

Ethics declarations

Conflict of interest

No conflicts of interest exist and the author declares he has no competing interests.

Ethical approval

Not applicable.

Additional information

Handling Editor: M. Grant Norton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McDowell, D.L. Nonequilibrium statistical thermodynamics of thermally activated dislocation ensembles: part 2—ensemble evolution toward correlation of enthalpy barriers. J Mater Sci 59, 5126–5160 (2024). https://doi.org/10.1007/s10853-023-09142-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09142-7

Navigation