Skip to main content
Log in

In situ SEM characterization of tensile behavior of nano-fibrous Al–Si and Al–Si–Sr eutectics

  • The Physics of Metal Plasticity: in honor of Professor Hussein Zbib
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In situ tensile testing in a scanning electron microscope was used to study the effects of fiber orientation and colony boundaries in laser-refined fully eutectic Al–Si and Al–Si–Sr alloys. In Al–Si alloy, the measured tensile stress–strain response in samples from single colonies is highly dependent on the orientation of Si nanofiber relative to the loading direction. Tensile samples with multiple colonies exhibit improved strain hardening but the measured ductility was limited by cracking along inter-eutectic colony boundaries. The Al–Si eutectic alloys, doped with Sr and processed with finer spot size laser beam, exhibit higher yield strength in samples from single colony due to refined fiber diameter and inter-fiber spacing of nanoscale Si fibers. As a consequence, samples with multiple colonies exhibit sliding or cracking at eutectic colony boundaries before significant uniform elongation developed within the colonies. The low ductility of Al–Si–Sr sample could be ascribed to the reduced shear strength of colony boundary induced by Sr element addition.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data and code availability

TEM images of the microstructures are available by request.

References

  1. Ye H (2003) An overview of the development of Al–Si-alloy based material for engine applications. J Mater Eng Perform 12(3):288–297

    Article  CAS  Google Scholar 

  2. Javidani M, Larouche D (2014) Application of cast Al–Si alloys in internal combustion engine components. Int Mater Rev 59(3):132–158

    Article  CAS  Google Scholar 

  3. Mazahery A, Shabani MO (2014) Modification mechanism and microstructural characteristics of eutectic Si in casting Al-Si alloys: a review on experimental and numerical studies. JOM 66(5):726–738

    Article  CAS  Google Scholar 

  4. Narayan Prabhu VVK (2014) Review of microstructure evolution in hypereutectic Al–Si alloys and its effect on wear properties. Trans Indian Inst Met 67(1):1–18

    Article  Google Scholar 

  5. García-Infanta JM, Zhilyaev AP, Cepeda-Jiménez CM, Ruano OA, Carreño F (2008) Effect of the deformation path on the ductility of a hypoeutectic Al–Si casting alloy subjected to equal-channel angular pressing by routes A, BA, BC and C. Scr Mater 58(2):138–141

    Article  Google Scholar 

  6. Kucukomeroglu T (2010) Effect of equal-channel angular extrusion on mechanical and wear properties of eutectic Al–12Si alloy. Mater Des 31(2):782–789

    Article  CAS  Google Scholar 

  7. Chandra K, Kain V (2015) Brittle failure of hypereutectic Al–Si alloy component. J Fail Anal Prev 15(5):679–685

    Article  Google Scholar 

  8. Zhang G-H, Zhang J-X, Li B-C, Cai W (2011) Characterization of tensile fracture in heavily alloyed Al-Si piston alloy. Prog Nat Sci Mater Int 21(5):380–385

    Article  Google Scholar 

  9. Wu W, Gong M, Wei B, Misra A, Wang J (2022) Atomistic modeling of interface strengthening in Al-Si eutectic alloys. Acta Mater 225:117586

    Article  CAS  Google Scholar 

  10. Xu CL, Wang HY, Qiu F, Yang YF, Jiang QC (2006) Cooling rate and microstructure of rapidly solidified Al–20wt.% Si alloy. Mater Sci Eng A 417(1):275–280

    Article  Google Scholar 

  11. Kayitmazbatir M, Lien H-H, Mazumder J, Wang J, Misra A (2022) Effect of cooling rate on nano-eutectic formation in laser surface remelted and rare earth modified hypereutectic Al-20Si alloys. Crystals 12(5):750

    Article  CAS  Google Scholar 

  12. Anasyida AS, Daud AR, Ghazali MJ (2010) Dry sliding wear behaviour of Al–12Si–4Mg alloy with cerium addition. Mater Des 31(1):365–374

    Article  CAS  Google Scholar 

  13. Timpel M, Wanderka N, Schlesiger R, Yamamoto T, Lazarev N, Isheim D, Schmitz G, Matsumura S, Banhart J (2012) The role of strontium in modifying aluminium–silicon alloys. Acta Mater 60(9):3920–3928

    Article  CAS  Google Scholar 

  14. Li Q, Zhao S, Li B, Zhu Y, Liu J, Liu D, Lan Y, Xia T (2019) Modification of multi-component Al–Si casting piston alloys by addition of rare earth yttrium. Mater Res Express 6(10):106525

    Article  CAS  Google Scholar 

  15. Yang Y, Geng K, Li S, Bermingham M, Misra RDK (2022) Highly ductile hypereutectic Al-Si alloys fabricated by selective laser melting. J Mater Sci Technol 110:84–95

    Article  CAS  Google Scholar 

  16. Wang K-Y, Xiang J, Zhao R-D, Bi J-L, Wu X-F, Chen M-H, Wu F-F, Eckert J (2021) Microstructure refinement and enhanced tensile properties of Al-11Mg2Si alloy modified by erbium. J Alloys Compd 860:158421

    Article  CAS  Google Scholar 

  17. Jiang W, Fan Z, Dai Y, Li C (2014) Effects of rare earth elements addition on microstructures, tensile properties and fractography of A357 alloy. Mater Sci Eng A 597:237–244

    Article  CAS  Google Scholar 

  18. Lien H-H, Mazumder J, Wang J, Misra A (2020) Ultrahigh strength and plasticity in laser rapid solidified Al–Si nanoscale eutectics. Mater Res Lett 8(8):291–298

    Article  CAS  Google Scholar 

  19. Nayak S, Dahotre NB, Dahotre NB (2004) Surface engineering of aluminum alloys for automotive engine applications. JOM 56(1):46–48

    Article  CAS  Google Scholar 

  20. Lien H-H, Mazumder J, Wang J, Misra A (2020) Microstructure evolution and high density of nanotwinned ultrafine Si in hypereutectic Al–Si alloy by laser surface remelting. Mater Charact 161:110147

    Article  CAS  Google Scholar 

  21. Wei B, Wu W, Xie D, Lien H-H, Kayitmazbatir M, Misra A, Wang J (2021) In situ characterization of tensile behavior of laser rapid solidified Al–Si heterogeneous microstructures. Mater Res Lett 9(12):507–515

    Article  CAS  Google Scholar 

  22. Wu W, Wei B, Misra A, Wang J (2023) Atomistic simulations of nano-fiber-confined metal plasticity. Scr Mater 235:115619

    Article  CAS  Google Scholar 

  23. Lien H-H, Wang J, Misra A (2022) Plastic deformation induced microstructure transition in nano-fibrous Al-Si eutectics. Mater Des 218:110701

    Article  CAS  Google Scholar 

  24. Pierantoni M, Gremaud M, Magnin P, Stoll D, Kurz W (1992) The coupled zone of rapidly solidified Al-Si alloys in laser treatment. Acta Metall Mater 40(7):1637–1644

    Article  CAS  Google Scholar 

  25. Chen Y, Li X, Liu J, Zhang Y, Chen X (2022) Effect of scanning speed on properties of laser surface remelted 304 stainless steel. Micromachines 13(9):1426

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sow MC, De Terris T, Castelnau O, Hamouche Z, Coste F, Fabbro R, Peyre P (2020) Influence of beam diameter on Laser Powder Bed Fusion (L-PBF) process. Addit Manuf 36:101532

    CAS  Google Scholar 

  27. Ghosh A, Wu W, Sahu BP, Wang J, Misra A (2023) Enabling plastic co-deformation of disparate phases in a laser rapid solidified Sr-modified Al–Si eutectic through partial-dislocation-mediated-plasticity in Si. Mater Sci Eng A 885:145648

    Article  CAS  Google Scholar 

  28. Xu S, Xie D, Liu G, Ming K, Wang J (2020) Quantifying the resistance to dislocation glide in single phase FeCrAl alloy. Int J Plast 132:102770

    Article  CAS  Google Scholar 

  29. Sneddon IN (1965) The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int J Eng Sci 3(1):47–57

    Article  Google Scholar 

  30. Lee S-W, Han SM, Nix WD (2009) Uniaxial compression of FCC Au nanopillars on an MgO substrate: the effects of prestraining and annealing. Acta Mater 57(15):4404–4415

    Article  CAS  Google Scholar 

  31. Xie D (2021) Micro-structure and mechanical properties of FeCrAl alloys under extreme environment. The University of Nebraska-Lincoln, Lincoln

    Google Scholar 

  32. Wharry JP, Yano KH, Patki PV (2019) Intrinsic-extrinsic size effect relationship for micromechanical tests. Scr Mater 162:63–67

    Article  CAS  Google Scholar 

  33. Greer JR, De Hosson JTM (2011) Plasticity in small-sized metallic systems: intrinsic versus extrinsic size effect. Prog Mater Sci 56(6):654–724

    Article  CAS  Google Scholar 

  34. Aktarer SM, Sekban DM, Saray O, Kucukomeroglu T, Ma ZY, Purcek G (2015) Effect of two-pass friction stir processing on the microstructure and mechanical properties of as-cast binary Al–12Si alloy. Mater Sci Eng A 636:311–319

    Article  CAS  Google Scholar 

  35. Purcek G, Saray O, Kul O (2010) Microstructural evolution and mechanical properties of severely deformed Al-12Si casting alloy by equal-channel angular extrusion. Met Mater Int 16(1):145–154

    Article  CAS  Google Scholar 

  36. Ansar M, Xinwei W, Chouwei Z (2011) Modeling strategies of 3D woven composites: a review. Compos Struct 93(8):1947–1963

    Article  Google Scholar 

  37. Byun J-H, Chou T-W (1989) Modelling and characterization of textile structural composites: a review. J Strain Anal Eng Des 24(4):253–262

    Article  Google Scholar 

  38. Gere JM, Goodno BJ (2012) Mechanics of materials. Cengage Learning, Boston

    Google Scholar 

  39. Horikawa K, Kuramoto S, Kanno M (2001) Intergranular fracture caused by trace impurities in an Al–5.5 mol% Mg alloy. Acta Mater 49(19):3981–3989

    Article  CAS  Google Scholar 

  40. Misra A, Hirth JP, Hoagland RG (2005) Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater 53(18):4817–4824

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is funded by the Department of Energy, Office of Science, Office of Basic Energy Sciences with the Grant Number of DE-SC0016808. Micromechanical tests were performed in the Nebraska Center for Materials and Nanoscience, which are supported by the National Science Foundation under Award Electrical, Communications and Cyber Systems (ECCS): 1542182 and the Nebraska Research Initiative.

Author information

Authors and Affiliations

Authors

Contributions

BW and WW performed in situ micromechanical tests, TEM characterization and data analysis; BW prepared micropillars. AG and MK synthesized materials. BW, JW and AM prepared the manuscript. JW and AM conceived this study. All authors commented the manuscript.

Corresponding author

Correspondence to Jian Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Handling Editor: M. Grant Norton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 2930 kb)

Supplementary file2 (MP4 2994 kb)

Supplementary file3 (MP4 1941 kb)

Supplementary file4 (MP4 1126 kb)

Supplementary file5 (MP4 729 kb)

Supplementary file6 (MP4 3748 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, B., Wu, W., Ghosh, A. et al. In situ SEM characterization of tensile behavior of nano-fibrous Al–Si and Al–Si–Sr eutectics. J Mater Sci 59, 5233–5246 (2024). https://doi.org/10.1007/s10853-023-09118-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09118-7

Navigation