Skip to main content
Log in

Structural and Mechanical Properties of Directionally Solidified Al-Si Alloys

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This review covers research aimed at finding the optimum composition and growth rate to obtain a highly modified Al-Si alloy using directional solidification. Investigations of microstructure and mechanical properties as a function of Si content and growth rate are analyzed. These works show that the composition yielding a eutectic microstructure changes considerably with increasing solidification rate in the range of 102-104 μm/s. The increase in ultimate tensile strength with increasing Si content up to that giving a completely eutectic microstructure is explained by a redistribution of volume content of α-Al and eutectic. The increase in tensile strength with increasing rate is explained by a decrease in microstructural scale accompanying the transformation of flake-to-fiber eutectic microstructure. The optimal fine fiber structure without any primary crystals of Al-Si alloy at a given Si content is obtained at the solidification rate giving a completely eutectic microstructure at that composition. Hypereutectic alloys can be fully modified using rapid cooling at such solidification rate that causes coupled growth of the eutectic for given composition of the alloy. Additional Sr modification results in a super-modified structure, high tensile strength and record high elongation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. L. Lasa and J.M. Rodriguez-Ibabe, Wear Behavior of Eutectic and Hypereutectic Al-Si-Cu-Mg Casting Alloys Tested Against a Composite Brake Pad, Mater. Sci. Eng., A, 2003, 363, p 193–202

    Google Scholar 

  2. Z. Qian, X. Liu, D. Zhao, and G. Zhang, Effects of Trace Mn Additional on the Elevated Temperature Tensile Strength and. Microstructure of a Low-Iron Al-Si Piston Alloy, Mater. Lett., 2008, 62, p 2146–2149

    Google Scholar 

  3. J.L. Murray and A.J. McAlister, The Al-Si (Aluminum-Silicon) System, Bull. Alloy Phase Diagr., 1984, 5(1), p 74–84

    CAS  Google Scholar 

  4. A.J. McAllster and J.L. Murray, The Al-Ge (Aluminum-Germanium) System, Bull. Alloy Phase Diagr., 1984, 5(4), p 341–347

    Google Scholar 

  5. D.C. Jenkinson and L.M. Hogan, The Modification of Aluminum-Silicon Alloys with Strontium, J. Cryst. Growth, 1975, 28, p 171–187

    Google Scholar 

  6. S.P. Nikanorov, M.P. Volkov, V.N. Gurin, Y. Burenkov, L.I. Derkachenko, B.K. Kardashev, L.I. Regel, and W.R. Wilcox, Structural and Mechanical Properties of Al-Si Alloys Obtained by Fast Cooling of a Levitated Melt, Mater. Sci. Eng., A, 2005, 390, p 63–69

    Google Scholar 

  7. S.P. Nikanorov, L.I. Derkachenko, B.K. Kardashev, B.N. Korchunov, V.N. Osipov, V.V. Shpeizman, Structural and Physicomechanical Properties of Directionally Crystallized Aluminum-Silicon Alloys. Phys. Solid State, 2013, 55(6), p.1207–1213, transl. of original Russian text Fizika Tverdogo Tela 2013, 55(6), p.1119–1125.

    CAS  Google Scholar 

  8. S.P. Nikanorov and V.V. Peller, Shaping by pulling from the melt, Handbook of Aluminum, Physical Metallurgy and Processes, G.E. Totten and D.S. MacKenzie, Ed., Marcel Dekker, New York, 2003, p 695–737

    Google Scholar 

  9. H.A.H. Steen and A. Hellawel, Structure and Properties of Aluminum-Slicon Eutectic Alloys, Acta Metall., 1972, 20(3), p 363–370

    CAS  Google Scholar 

  10. F. Yilmaz and R. Elliot, The Microstructure and Mechanical Properties of Unidirectionally Solidified Al-Si Alloys, J. Mater. Sci., 1989, 24(6), p 2065–2070

    CAS  Google Scholar 

  11. L. Wang, J. Shen, Y.-P. Zhang, and L.-L. Guo, Effect of Withdrawal Rate and Gd on the Microstructures and Directionally Solidified NiAl-Cr(Mo) Hypereutectic Alloy, J. Miner. Metals Mater. Soc. (JOM), 2016, 68, p 1017–1045

    Google Scholar 

  12. L. Wang, J. Shen, J. Zhang, and F. Hengzhi, Microstructure, Fracture Toughness and Compressive Property of As-Cast and Directionally Solidified NiAl—Based Eutectic Composite, Mater. Sci. Eng., A, 2016, 664, p 188–194

    CAS  Google Scholar 

  13. O.L. Rocha, L.G. Gomes, D.J. Moutinho, I.L. Ferreira, and A. Garcia, The Columnar to Equiaxed Transition in the Directional Solidification of Aluminum Based Multicomponent Alloys, Rem: Revisia Escola de Minas, 2016, 68(1), p 85–90

    Google Scholar 

  14. M.D. Peres, C.A. Siqueira, and A. Garcia, Macrostructural and Microstructural Development in Al-Si Alloys Directionally Solidified Under Unsteady-State Conditions, J. Alloy. Compd., 2004, 381(1–2), p 168–181

    CAS  Google Scholar 

  15. C.A. Siqueira, M. Cheung, and A. Garcia, Solidification Thermal Parameters Affecting the Columnar-to-Equiaxed Transition, Metall. Mater. Trans. A, 2002, 33, p 2107–2118

    Google Scholar 

  16. O.L. Rocha, C.A. Siqueira, and A. Garcia, Cellular/Dendritic Transition During Unsteady-State Unidirectional Solidification of Sn-Pb Alloys, Mater. Sci. Eng., A, 2003, 347, p 56–59

    Google Scholar 

  17. K.S. Cruz, E.S. Meza, F.A.P. Fernandes, J.M.V. Quaresma, L.C. Casteletti, and A. Garcia, Dendritic Arm Spacing Affecting Mechanical Properties and Wear Behavior of Al-Sn and Al-Si Alloys Directionally Solidified Under Unsteady-State Condition, Metall. Mater. Trans. A, 2010, 41, p 972–984

    Google Scholar 

  18. C. Gandin, From Constrained to Unconstrained Growth During Directional Solidification, Acta Mater., 2000, 48(10), p 2483–2501

    CAS  Google Scholar 

  19. C.A. Siqueira, M. Cheung, and A. Garcia, The Columnar to Equiaxed Transition During Solidification Sn-Pb Alloys, J. Alloys Compd., 2003, 351, p 126–134

    CAS  Google Scholar 

  20. D.B. Carvalho, E.C. Guimardes, A.L. Moreira, D.J. Moutinho, J.M.D. Filho, and O.L. Rocha, Characterization of the Al-3 wt.% Si Alloy in Unsteady-State Horizontal Directional Solidification, Materials Research, 2013, 16(4), p 874–883

    CAS  Google Scholar 

  21. J.E. Spinelly, L.L. Ferreira, and A. Garcia, Influence of Melt Convection on the Columnar to Equiaxed Transition and Microstructure of Downward Unsteady-State Directionally Solidified Sn-Pb Alloys, J. Alloys Compd., 2004, 384(1), p 217–226

    Google Scholar 

  22. R. Triverdi and W. Kurz, Dendritic Growth, Int. Mater. Rev., 1994, 39(2), p 49–74

    Google Scholar 

  23. D.P. Woodruff, The Solid-Liquid Interface, Cambridge University Press, London, 1973, p 80–84

    Google Scholar 

  24. J.A.E. Bell and W.C. Winegard, Dendrite Spacing in Tin-Lead Alloys, J. Inst. Met., 1963, 93, p 357–359

    Google Scholar 

  25. S.H. Han and R. Trivedi, Primary Spacing Selection in Directionally Solidified Alloys, Acta Metall., 1994, 42, p 25–41

    CAS  Google Scholar 

  26. W.W. Mullins and R.F. Sekerka, Morphological Stability of a Particle Growing by Diffusion or Heat Flow, J. Appl. Phys., 1963, 34, p 323–329

    CAS  Google Scholar 

  27. G.I. Ding, W. Huang, X. Lin, and Y. Zhou, Prediction of Average Spacing for Constrained Cellular/Dendritic Growth, J. Cryst. Growth, 1997, 177, p 281–288

    CAS  Google Scholar 

  28. J.A. Warren and J.S. Langer, Prediction of Dendritic Spacing in a Directional Solidification Experiment, Phys. Rev. E, 1993, 47, p 2702–2712

    CAS  Google Scholar 

  29. L. Makkonen, Spacing in Solidification of Dendritic Arrays, J. Cryst. Growth, 2000, 208, p 772–778

    CAS  Google Scholar 

  30. E. Gradirh, I. Karaca, H. Kaya, and N. Marash, Effect of Growth Rate and Composition on the Primary Spacing, the Dendrite Tip Radius and Mushy Zone Depth in Directionally Solidified Succinonitrile-Salol Alloys, J. Cryst. Growth, 2003, 255, p 190–203

    Google Scholar 

  31. E. Gadirh, N. Marash, B. Bayender, and M. Gunduz, Investigation of the Structure Parameters According to the Solidification Parameters for Pivalic Acid, J. Mater. Sci., 1999, 349(22), p 5533–5541

    Google Scholar 

  32. M. Gunduz and E. Gadirh, Directional Solidification of Aluminium-Copper Alloys, Mat. Sci. Eng. A, 2002, 327(2), p 167–185

    Google Scholar 

  33. J.D. Hunt and S.Z. Lu, Numerical Modeling of Cellular/Dendritic Array Growth and Structure Predictions, Metall. Mater. Trans. A, 1996, 27A(3), p 611–623

    CAS  Google Scholar 

  34. J.S. Langer and H. Muller-Krumbhaar, Theory of Dendritic Growth. I. Elements of a Stability Analyses, Acta Metall., 1978, 26, p 1681–1687

    CAS  Google Scholar 

  35. J.D. Hunt, Cellular and Primary Dendrite Arm Spacings, Solidification and Casting of Metals, J.D. Hunt, Ed., The Metal Society, London, 1979, p 3–9

    Google Scholar 

  36. W. Kurz and D.J. Fisher, Dendrite Growth at the Limit of Stability: Tip Radius and Spacing, Acta Metall., 1981, 29(1), p 11–20

    CAS  Google Scholar 

  37. R. Trivedi, Interdendritic Spacing: Part II. A Comparison of Theory and Experiment, Metall. Trans., 1984, 15A, p 977–982

    CAS  Google Scholar 

  38. D. Bouchard and J.S. Kirkaldi, Prediction of Dendrite Arm Spacing in Unsteady and Steady-State Heat Flow of Undirectionally Solidified Binary Alloys, Metall. Mater. Trans., 1997, 28B, p 651–663

    CAS  Google Scholar 

  39. K. Trivedi and K. Somboonsuk, Constrained Dendritic Growth and Spacing, Mater. Sci. Eng., 1984, 65, p 65–74

    CAS  Google Scholar 

  40. J.W. Rutter and B. Chalmers, A prismatic Substructure Formed During Solidification of Metals, Can. J. Phys., 1953, 31, p 15–39

    CAS  Google Scholar 

  41. W.A. Tiller, K.A. Jackson, J.W. Rutter, and B. Chalmers, The Redistribution of solute Atoms During the Solidification of Metals, Acta Metall., 1953, 1, p 428–437

    CAS  Google Scholar 

  42. H. Kaya, E. Gadirh, and M. Gunduz, Dendritic Growth in an Aluminum-Silicon Alloy, J. Mater. Eng. Perform., 2007, 6(1), p 12–21

    Google Scholar 

  43. J.E. Spinelli, D.M. Rosa, I.L. Ferreira, and A. Garcia, Influence of Melt Convection on Dendritic Spacings of Downward, Unsteady-State Directionally Solidified Al-Cu Alloys, Mater. Sci. Eng., 2004, 383A, p 271–282

    Google Scholar 

  44. J.E. Spinelli, M.D. Peres, and A. Garcia, Thermosolutal Convective Effects on Dendritic Array Spacings in Downward Transient Directional Solidification of Al-Si Alloys, J. Alloys Compd., 2005, 403, p 228–238

    CAS  Google Scholar 

  45. O.L. Rocha, C.A. Siqueira, and A. Garcia, Heat Flow Parameters Affecting Dendrite Spacing During Unsteady-State Solidification of Sn-Pd and Al-Cu Alloys, Metall. Mater. Trans. A, 2003, 34A, p 995–1006

    CAS  Google Scholar 

  46. D.L.B. Carvalho, T.A.P.S. Costo, A.L.S. Moreiro, M.A.P.S. Silva, J.M.D. Filho, D.J.C. Moutinho, and O.F.L. Rocha, Solidification Thermal Parameters and Dendritic Growth During the Horizontal Directional Solidification of Al-7 wt.% Si alloy, REM: Rev Min, 2014, 67(3), p 267–270

    Google Scholar 

  47. M.H. Kim, C.H. Jung, H.H. Jo, and C.S. Kang, The Effect of Ti and Sr on the Microstructures of Al-11.3 wt.% Si Alloys Produced by the Ohno Continuous Casting Process, Metals Mater., 2000, 6(3), p 235–240

    CAS  Google Scholar 

  48. H. Soda, F. Chabchoub, W.H. Lam, S.A. Argyropoulos, and A. Mclean, The horizontal Ohno Continuous Casting Process, Cast Metals, 1991, 4, p 12–19

    Google Scholar 

  49. A. Ohno, Continuous Casting of Single Crystal ingots by O.C.C. process, J. Metals, 1986, 38, p 14–16

    CAS  Google Scholar 

  50. B. Toloui and A. Hellawell, The Separation and Undercooling in Al-Si Eutectic Alloy—The Influence of Freezing Rate and Temperature Gradient, Acta Metall., 1976, 24(6), p 565–573

    CAS  Google Scholar 

  51. P. Magnin, J.T. Mason, and R. Trivedi, Growth of Irregular Eutectics and the Al-Si System, Acta Metall. Mater., 1991, 39(4), p 469–480

    CAS  Google Scholar 

  52. S. Khan and R. Elliot, Quench Modification of Aluminum-Silicon Eutectic Alloys, J. Mater. Sci., 1996, 31(14), p 3731–3737

    CAS  Google Scholar 

  53. R. Cupris, B. Major, and W. Wolczynsky, Transition of Flake into Fibre Structure in Eutectic Al-Si, Mater. Sci. Forum, 2000, 329–330, p 161–166

    Google Scholar 

  54. T. Hosch, L.G. England, and R.E. Napolitano, Analysis of the High Growth-Rate Transition in Al-Si Eutectic Solidification, J. Mater. Sci., 2009, 44(18), p 4892–4899

    CAS  Google Scholar 

  55. H.S. Kang, W.Y. Yoon, K.H. Kim, M.H. Kim, and Y.P. Yoon, Microstructure Selections in the Undercooled Hypereutectic Al-Si Alloys, Mater. Sci. Eng., A, 2005, 404(1–2), p 117–123

    Google Scholar 

  56. V.K. Vijeesh and N. Prabhu, Review of Microstructure Evolution in Hypereutectic Al-Si Alloys and Its Effect on Wear Properties, Trans. Indian Inst. Met., 2014, 67(1), p 1–18

    CAS  Google Scholar 

  57. H. Yi and D. Zhang, Morphologies of Si Phase and La-rich Phase in As-Cast Hypereutectic Al-Si-xLa Alloys, Mater. Lett., 2003, 57, p 2523–2529

    CAS  Google Scholar 

  58. Y.T. Pey and J. De Hosson, Functionally Graded Materials Produced by Laser Cladding, Acta Mater., 2000, 48, p 2617–2624

    Google Scholar 

  59. Y.T. Pey and J. De Hosson, Five-Fold Branched Si Particles in Laser Clad AlSi Functionally Graded Materials, Acta Mater., 2001, 49, p 561–571

    Google Scholar 

  60. D. Liang, D. Bayraktar, and H. Jones, Formation and Segregation of Primary Silicon in Bridgman Solidification Al-18.3 wt.% Si Alloy, Acta Metall. Mater., 1995, 43, p 579–585

    CAS  Google Scholar 

  61. W.M. Wang, X.F. Bian, J.Y. Oin, and S.I. Syliusarenko, The Atomic-Structure Changes in Al-16% Si Alloy Above the Liquidus, Metall. Mater. Trans. A, 2000, 31, p 2163–2166

    Google Scholar 

  62. C.L. Xu, H.Y. Wang, F. Qiu, Y.F. Yang, and Q.C. Jiang, Cooling Rate and Microstructure of Rapidly Solidified Al-20 wt.% Si Alloy, Mater. Sci. Eng., A, 2006, 417, p 275–280

    Google Scholar 

  63. P.J. Li, V.I. Nikitin, E.G. Kandalova, and K.V. Nikitin, Effect of Melt Overheating, Cooling and Solidification Rates on Al-16 wt.%Si Alloy Structure, Mater. Sci. Eng., A, 2002, 332, p 371–374

    Google Scholar 

  64. X.F. Bian and W.M. Wang, Thermal-Rate Treatment and Structure Transformation of Al-13 wt.% Si Alloy, Metall. Mater. Lett., 2000, 44, p 54–58

    CAS  Google Scholar 

  65. C.L. Xu and Q.C. Jiang, Morphologies of Primary Silicon in Hypereutectic Al-Si Alloys with Melt Overheating Temperature and Cooling Rate, Mater. Sci. Eng., A, 2006, 437, p 451–455

    Google Scholar 

  66. C.L. Xu, H.Y. Wang, C. Liu, and Q.C. Jiang, Growth of Octahedral Primary Silicon in Cast Hypereutectic Al-Si alloys, J. Cryst. Grwoth, 2006, 291, p 540–547

    CAS  Google Scholar 

  67. F. Yilimaz, O.A. Atasoy, and R. Elliot, Growth Structures in Aluminium-Silicon Alloys II. The Influence of Strontium, J. Cryst. Growth, 1992, 118, p 377–384

    Google Scholar 

  68. R.P. Liu, D.M. Herlach, M. Vandyousseffi, and A.L. Greer, Undercooling and Solidification of Al-50 at. pct. Si Alloy by Electromagnetic Levitation, Metall. Mater. Trans. A, 2004, 35(2), p 607–612

    Google Scholar 

  69. M.G. Day, Primary Silicon Spherulites in Aluminum-Silicon Alloys, Nature, 1968, 219, p 1357–1358

    CAS  Google Scholar 

  70. K.F. Kobayashi and L.M. Hogan, The Crystal Growth of Silicon in Al-Si Alloys, J. Mater. Sci., 1985, 20, p 1961–1975

    CAS  Google Scholar 

  71. H. Fredriksson, M. Hillert, and N. Lange, The Modification of Aluminium-Silicon Alloys by Sodium, J. Inst. Metalls, 1973, 101, p 285–299

    CAS  Google Scholar 

  72. C.B. Kim, R.W. Heine, Fundamentals of Solidification in the Aluminum Silicon System. J. Inst. Metals, 1963-64, 92, 367–376.

  73. A. Hellawell, The Growth and Structure Eutectics with Silicon and Germanium, Prog. Mater Sci., 1970, 15, p 3–78

    Google Scholar 

  74. K. Kobayashi, P.H. Shingu, and R. Ozaki, Crystal Growth of the Primary Silicon in an Al-16 wt.% Si Alloy, J. Mater. Sci., 1975, 10, p 290–299

    CAS  Google Scholar 

  75. L.I. Derkachenko, B.N. Korchunov, S.P. Nikanorov, V.N. Osipov, and V.V. Shpeizman, Structure, Microhardness and Strength of a Directionally Crystallized Al-Ge Alloy. Phys. Solid State, 2014, 56(3), pp. 527-530, (transl. of original Russ. text Fizika Tverdogo Tela, 2014, 56(3), p.512-513).

    CAS  Google Scholar 

  76. V.M. Glazov and V.N. Vigdorovich, Microhardness of metals, State science technical publishing house on ferrous and non-ferrous metallurgy, Moscow, 1962, (Gos. Nauch. Tekhn. Izd. Literatury po Chernoi i Tsvetnoi Metallurgii, in Russian).

  77. S. Justi and R.H. Bragg, Vickers Hardness Measurements of Unidirectionally Solidified Al-Si Eutectic Alloy Grown at Different Rates, Met. Trans. AIME, 1976, 7A, p 1954–1957

    CAS  Google Scholar 

  78. S. Justi and R.H. Bragg, Tensile Properties of Directionally Solidified Al-Si Eutectic, Metall. Trans. AIME, 1978, 9A, p 515–518

    CAS  Google Scholar 

  79. H. Kaya, E. Cadirli, M. Gunduz, and A. Ulgen, Effect of the Temperature Gradient, Growth Rate, and the Interflake Spacing on the Microhardness in the Directionally Solidified Al-Si Eutectic Alloy, J. Mater. Eng. Perf., 2003, 12(5), p 544–551

    CAS  Google Scholar 

  80. S. Khan, A. Ourdjini, Q.S. Hamed, M.A.A. Najafabadi, and R. Elliott, Hardness and Mechanical Property Relationship in of Directionally Solidified Aluminum-Silicon Eutectic alloys with Different Silicon Morphologies, J. Mater. Sci., 1993, 28, p 5957–5962

    CAS  Google Scholar 

  81. A.I. Telli and S.E. Kisakurek, Effect of Antimony Additions on Hardness and Tensile Properties of Directionally Solidified Al-Si Eutectic Alloy, Mater. Sci. Technol., 1988, 4, p 153–156

    CAS  Google Scholar 

  82. F. Yilmaz, Structure and Properties of Directionally Solidified Al-Si Hypereutectic Alloys, Mater. Sci. Eng., 1990, 124A, p L1–L5

    Google Scholar 

  83. F. Vnuk, M. Sahoo, R. Van De Merve, and R.W. Smith, The Hardness of Al-Si Eutectic Alloys, J. Mater. Sci., 1979, 14, p 975–987

    CAS  Google Scholar 

  84. G.B. Stroganov, V.A. Rotenberg, G.B. Gershman, (Splav Aluminiya s Kremniem (Alloys of aluminum with silicon), Metallurgy, Moscow, 1977, p.121 (in Russian).

  85. E.H. Dix, Jr. and J.J. Bowman, Metals Handbook, T. Lyman, Ed., Amerikan Society for Metals, Metals Handbook Committee, Cleveland, OH, 1948, p. 804

  86. T. Hosch and R.E. Napolitano, The Effect of the Flake to Fiber Transition in Silicon Morphology on the Tensile Properties of Al-Si Eutectic Alloys, Mater. Sci. Eng., A, 2010, 528(1), p 226–232

    Google Scholar 

  87. C.W. Nan and D.R. Clarke, The Influence of Particle Size and Particle Fracture on the Elastic/Plastic Deformation of Metal Matrix Composites, Acta Mater., 1996, 44(9), p 3801–3811

    CAS  Google Scholar 

  88. M.T. Kiser, F.W. Zok, and D.S. Wilkinson, Plastic Flow and Fracture Metal of a Particulate Metal Matrix Composite, Acta Materiala, 1996, 44(9), p 3465–3476

    CAS  Google Scholar 

  89. V.Yu. Fedorov, S.B. Kustov, and R. Shaller, Growth Parameters Dependence of Microstructure Dispersion of Aluminum Alloys, Bull. Russ. Acad. Sci. Phys., 2004, 68, p 865–869 (in Russian)

    CAS  Google Scholar 

  90. S. Hegde and K.N. Prabhu, Modification of Eutectic Silicon in Al-Si alloys, J. Mater. Sci., 2008, 43, p 3009–3027

    CAS  Google Scholar 

  91. G.K. Sigworth, The Modification of Al-Si Casting Alloys: Important Practical and Theoretical Aspects, Int. J. Metalcast., 2008, 2(2), p 19–41

    CAS  Google Scholar 

  92. G.K. Sigworth, The modification of Al-Si casting alloys: Important practical and theoretical aspects (Author’s Reply). Int. J. Metalcast. 2009, 3(1), p. 65–67, 68–70, 71–72.

    CAS  Google Scholar 

  93. L. Qiang, L. Qingchum, and L. Qiful, Modification of Al-Si Alloys with Sodium, Acta Metall. Mater., 1991, 39(11), p 2497–2502

    Google Scholar 

  94. S. Nafisi and R. Ghomashchi, Effect of Modification During Conventional and Semi-Solid Metal Processing of A356 Al-Si Alloy, Mater. Sci. Eng., A, 2006, 415, p 273–285

    Google Scholar 

  95. X. Jian, C. Xu, T. Meek, and Q. Han, Effect of Ultrasound Vibration on the Solidification Structure of A356 Alloy, AFS Trans., 2005, 113, p 131–138

    CAS  Google Scholar 

  96. J. Campbell and M. Tiryakioglu, Review of Effect of P and Sr on Modification and Porosity Development in Al-Si Alloys, Mater. Sci. Technol., 2010, 26(3), p 262–268

    CAS  Google Scholar 

  97. G. Liu, G. Li, C. Anhui, and Z. Chen, The Influence of Strontium Addition on Wear Properties of Al-20 wt.% Si Alloys Under Dry Reciprocating Sliding Condition, Mater. Des., 2011, 32(1), p 121–126

    Google Scholar 

  98. A. Hekmat-Ardakan, X. Liu, F. Ajersh, and X.G. Chen, Wear Behavior of Hypereutectic Al-Si-Cu-Mg Casting Alloys with Variable Mg Contents, Wear, 2010, 269, p 684–692

    CAS  Google Scholar 

  99. A.I. Averkin, B.N. Korchunov, S.P. Nikanorov, V.N. Osipov, The effect of strontium on the mechanical properties of aluminum-silicon alloy, Tech. Phys. Lett., 2016, 42(2), p.201-203, (transl. of original Russian text, Pis’ma v ZhTF, 2016, 42, p.67-73).

    CAS  Google Scholar 

  100. G.K. Sigworth, Determining Grain Size and Eutectic Modification in Aluminum Alloy Castings, Modern Casting, 1987, 77, p 23–25

    CAS  Google Scholar 

  101. M. Drouzy, S. Jakob, and M. Richard, Interpretation of Tensile Results by Means of Quality Index and Probable Yield Strength, AFS Int. Cast. Metals J., 1980, 5, p 43–50

    CAS  Google Scholar 

  102. A.M. Samuel, J. Gauthier, and F.H. Samuel, Microstructural Aspects of the Dissolution and Melting of Al2Cu Phase in Al-Si Alloys During Solution Heat Treatment, Metall. Mater. Trans. A, 1996, 27, p 1785–1798

    Google Scholar 

  103. B. Closset and J.E. Gruzleski, Mechanical Properties of A356 Alloy Modified with Pure Strontium, Am. Found. Soc. (AFS) Trans, 1982, 90, p 453–464

    CAS  Google Scholar 

  104. F. Cao, Y. Jia, K.G. Prashanth, P. Ma, J. Liu, S. Scudino, F. Huang, J. Eckert, and J. Sun, Evolution of Microstructure and Mechanical Properties of As-Cast Al-50Si Alloy Due to Heat Treatment and P Modifier Content, Mater. Des., 2015, 74, p 150–156

    CAS  Google Scholar 

  105. B.M. Thall and B. Chalmers, Modification in Aluminum Silica Alloys, J. Inst. Metals., 1950, 77, p 79–97

    CAS  Google Scholar 

  106. F. Fommei, Modification Treatments of Al-Si Alloys, Aluminio, 1977, 46, p 121–135

    CAS  Google Scholar 

  107. M. Gupta and S. Ling, Microstructure and Mechanical Properties of Hypo/Hypereutectic Al-Si Alloys Synthesized Using a Near-Net Shape Forming Technique, J. Alloy. Compd., 1999, 287, p 284–294

    CAS  Google Scholar 

  108. H. Liao, Y. Sun, and G. Sun, Correlation Between Mechanical Properties and Amound of Dendritic α-Al Phase in As-Cast Near-Eutectic Al-11.6% Si Alloys Modified with Strontium, Mater. Sci. Eng., A, 2002, 335, p 62–66

    Google Scholar 

  109. L. Wang, J. Shen, Z. Shang, J. Zhang, J. Chen, and F. Hengzhi, Effect of Dy on the Microstructures of Directionally Solidified NiAl-Cr(Mo) Hypereutectic Alloy at Different Withdrawal Rates, Intermetallics, 2014, 44, p 44–54

    CAS  Google Scholar 

  110. L. Wang, J. Shen, Z. Shang, J. Zhang, D. Yujun, and F. Hengzhi, Microstructure and Mechanical Property of Directionally Solidified NiAl-Cr(Mo)-(Hf, Dy) Alloy at Different Withdrawal Rates, Mater. Sci. Eng., A, 2014, 607, p 113–121

    CAS  Google Scholar 

  111. L.M. Egjrova, B.N.Korchunov, V.N. Osipov, V.A. Bershtein, S.P. Nikanorov, Kinetics of Silicon Precipitation in a Directly Crystallized Binary Al-Si Alloy, Phys. Solid State, 2013, 55 (12), p.2549–2553, (transl. of original Russian text, Fisika Tverdogo Tela, 2013, 55 (12), p.2423–2427).

    CAS  Google Scholar 

  112. S.P. Nikanorov, B.K. Kardashev, V.N. Osipov, V.V. Kaminscii, and N.V. Sharenkova, Anelasticity and Nanostructural Dislocation Deformation of Al-Si Alloy with Supermodified Eutectic Structure, J. Tech. Phys., 2019, 8, p 1151–1154

    Google Scholar 

  113. M. Van Rooyen and E.J. Mittemeijer, Precipitation of Silicon in Aluminum-Silicon: A Calorimetric Analysis of Liquid-Quenched and Solid-Quenched Alloys, Metall. Trans. A, 1989, 20, p 1207–1214

    Google Scholar 

  114. X. Fang, M. Song, K. Li, and Y. Du, Precipitaton Sequence of an Aged Al-Mg-Si Alloy, J. Min. Metall. Sect. (B), 2010, 46(2), p 171–180

    CAS  Google Scholar 

  115. K. Matsuda, Y. Sakaguchi, Y. Miyata, Y. Uetani, T. Sato, A. Kamia, and S. Ikeno, Precipitation Sequence of Various Kinds of Metastable Phases in Al-1.0 mass% Mg2Si-0.4 mass% Si alloy, J. Mater. Sci., 2000, 35, p 179–189

    CAS  Google Scholar 

  116. C.D. Marioara, S.J. Andersen, H.W. Zandbergen, and R. Holmstad, The Influence of Alloy Composition on Precipitates of the Al-Mg-Si System, Metall. Mater. Trans. A, 2005, 36, p 691–702

    Google Scholar 

  117. S.J. Andersen, C.D. Marioara, R. Vissers, A. Frøseth, and H.W. Zandbergen, The Structural Relation Between Precipitates in Al-Mg-Si Alloys, the Al-Matrix and Diamond Silicon, with Emphasis on the Trigonal Phase U1-MgAl2Si2, Mater. Sci. Eng., A, 2007, 444, p 157–169

    Google Scholar 

  118. S.J. Andersen, H.W. Zandbergen, J. Jansen, C. Trehold, U. Tundal, and O. Reiso, The Crystal Structure of the β″ Phase in Al-Mg-Si Alloys, Acta Mater., 1998, 46(9), p 3283–3298

    CAS  Google Scholar 

  119. P.H. Ninive, O.M. Lovvik, and A. Strandlie, Density Functional Study of the β Phase in Al-Mg-Si alloys, Metall. Mater. Trans. A, 2014, 45, p 2916–2924

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are very appreciative for the valuable comments and suggestions provided by Prof. W.R. Wilcox, Clarkson University, Potsdam, NY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Nikanorov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikanorov, S.P., Osipov, V.N. & Regel, L.I. Structural and Mechanical Properties of Directionally Solidified Al-Si Alloys. J. of Materi Eng and Perform 28, 7302–7323 (2019). https://doi.org/10.1007/s11665-019-04414-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04414-3

Keywords

Navigation